|
Adamson, I. (1976). Pulmonary toxicity of bleomycin. Environmental Health Perspectives 16, 119. Adamson, I.Y., and Bowden, D.H. (1974). The pathogenesis of bleomycin-induced pulmonary fibrosis in mice. The American journal of pathology 77, 185. Akram, K.M., Lomas, N.J., Forsyth, N.R., and Spiteri, M.A. (2014). Alveolar epithelial cells in idiopathic pulmonary fibrosis display upregulation of TRAIL, DR4 and DR5 expression with simultaneous preferential over-expression of pro-apoptotic marker p53. International journal of clinical and experimental pathology 7, 552. Albera, C., Bradford, W., Costabel, U., Hormel, P., and Lancaster, L. (2009). Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. The Lancet 374, 222-228. Alhamad, E.H., Cal, J.G., Shakoor, Z., Almogren, A., and AlBoukai, A.A. (2013). Cytokine gene polymorphisms and serum cytokine levels in patients with idiopathic pulmonary fibrosis. BMC medical genetics 14, 66. Annes, J.P., Munger, J.S., and Rifkin, D.B. (2003). Making sense of latent TGFβ activation. Journal of cell science 116, 217-224. Antoniou, K.M., Ferdoutsis, E., and Bouros, D. (2003). Interferons and their application in the diseases of the lung. Chest 123, 209-216. Asano, Y., Ihn, H., Yamane, K., Jinnin, M., Mimura, Y., and Tamaki, K. (2004). Phosphatidylinositol 3-kinase is involved in α2 (I) collagen gene expression in normal and scleroderma fibroblasts. The Journal of Immunology 172, 7123-7135. Ask, K., Bonniaud, P., Maass, K., Eickelberg, O., Margetts, P.J., Warburton, D., Groffen, J., Gauldie, J., and Kolb, M. (2008). Progressive pulmonary fibrosis is mediated by TGF-β isoform 1 but not TGF-β3. The international journal of biochemistry & cell biology 40, 484-495. Bach, E.A., Aguet, M., and Schreiber, R.D. (1997). The IFNγ receptor: a paradigm for cytokine receptor signaling. Annual review of immunology 15, 563-591. Blobe, G.C., Schiemann, W.P., and Lodish, H.F. (2000). Role of transforming growth factor β in human disease. New England Journal of Medicine 342, 1350-1358. Blum, R.H., Carter, S.K., and Agre, K. (1973). A clinical review of bleomycin—a new antineoplastic agent. Cancer 31, 903-914. Borzone, G., Moreno, R., Urrea, R., Meneses, M., OyarzÚn, M., and Lisboa, C. (2001). Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine 163, 1648-1653. Caraci, F., Gili, E., Calafiore, M., Failla, M., La Rosa, C., Crimi, N., Sortino, M.A., Nicoletti, F., Copani, A., and Vancheri, C. (2008). TGF-β1 targets the GSK-3β/β-catenin pathway via ERK activation in the transition of human lung fibroblasts into myofibroblasts. Pharmacological research 57, 274-282. Chambers, R. (2008). Abnormal wound healing responses in pulmonary fibrosis: focus on coagulation signalling. European Respiratory Review 17, 130-137. Chaudhary, N., Roth, G., Hilberg, F., Müller-Quernheim, J., Prasse, A., Zissel, G., Schnapp, A., and Park, J. (2007). Inhibition of PDGF VEGF and FGF signalling attenuates fibrosis. European Respiratory Journal. Chaudhary, N.I., Schnapp, A., and Park, J.E. (2006). Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. American journal of respiratory and critical care medicine 173, 769-776. Chen, C.-L., Chiang, T.-H., Tseng, P.-C., Wang, Y.-C., and Lin, C.-F. (2015). Loss of PTEN causes SHP2 activation, making lung cancer cells unresponsive to IFN-γ. Biochemical and biophysical research communications 466, 578-584. Chua, F., Gauldie, J., and Laurent, G.J. (2005). Pulmonary fibrosis: searching for model answers. American journal of respiratory cell and molecular biology 33, 9-13. Claussen, C.A., and Long, E.C. (1999). Nucleic acid recognition by metal complexes of bleomycin. Chemical reviews 99, 2797-2816. Conte, E., Gili, E., Fagone, E., Fruciano, M., Iemmolo, M., and Vancheri, C. (2014). Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. European Journal of Pharmaceutical Sciences 58, 13-19. Cui, A., Anhenn, O., Theegarten, D., Ohshimo, S., Bonella, F., Sixt, S.U., Peters, J., Sarria, R., Guzman, J., and Costabel, U. (2010). Angiogenic and angiostatic chemokines in idiopathic pulmonary fibrosis and granulomatous lung disease. Respiration 80, 372-378. Dance, M., Montagner, A., Salles, J.-P., Yart, A., and Raynal, P. (2008). The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular signalling 20, 453-459. Diaz, K.T., Skaria, S., Harris, K., Solomita, M., Lau, S., Bauer, K., Smaldone, G.C., and Condos, R. (2012). Delivery and safety of inhaled interferon-γ in idiopathic pulmonary fibrosis. Journal of aerosol medicine and pulmonary drug delivery 25, 79-87. Du Bois, R. (2010). Strategies for treating idiopathic pulmonary fibrosis. Nature reviews Drug discovery 9, 129. Esposito, D.B., Lanes, S., Donneyong, M., Holick, C.N., Lasky, J.A., Lederer, D., Nathan, S.D., O’Quinn, S., Parker, J., and Tran, T.N. (2015). Idiopathic pulmonary fibrosis in United States automated claims. Incidence, prevalence, and algorithm validation. American journal of respiratory and critical care medicine 192, 1200-1207. Fernandez, I.E., and Eickelberg, O. (2012). The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proceedings of the American Thoracic Society 9, 111-116. Giacomini, M.M., Travis, M.A., Kudo, M., and Sheppard, D. (2012). Epithelial cells utilize cortical actin/myosin to activate latent TGF-β through integrin αvβ6-dependent physical force. Experimental cell research 318, 716-722. Gurujeyalakshmi, G., and Giri, S. (1995). Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-β and procollagen I and III gene expression. Experimental lung research 21, 791-808. Gutteridge, J.M., Rowley, D.A., and Halliwell, B. (1981). Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Detection of ‘free’iron in biological systems by using bleomycin-dependent degradation of DNA. Biochemical Journal 199, 263-265. Hasaneen, N., Vu, T., Fusiak, T., Foda, H., Condos, R., and Smaldone, G. (2015). Anti-fibrotic role of inhaled interferon-γ in idiopathic pulmonary fibrosis (Eur Respiratory Soc). Hayashida, T., Decaestecker, M., and Schnaper, H.W. (2003). Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β-dependent responses in human mesangial cells. The FASEB journal 17, 1576-1578. Heinrich, P.C., Behrmann, I., Müller-Newen, G., Schaper, F., and Graeve, L. (1998). Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochemical journal 334, 297-314. Hinz, B., Phan, S.H., Thannickal, V.J., Galli, A., Bochaton-Piallat, M.-L., and Gabbiani, G. (2007). The myofibroblast: one function, multiple origins. The American journal of pathology 170, 1807-1816. Hirano, T., and Kishimoto, T. (1992). Molecular biology and immunology of interleukin-6. Research in immunology 143, 723-724. Hostettler, K.E., Zhong, J., Papakonstantinou, E., Karakiulakis, G., Tamm, M., Seidel, P., Sun, Q., Mandal, J., Lardinois, D., and Lambers, C. (2014). Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Respiratory research 15, 157. Hutchinson, J., Fogarty, A., Hubbard, R., and McKeever, T. (2015). Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. European Respiratory Journal 46, 795-806. Inomata, M., Kamio, K., Azuma, A., Matsuda, K., Kokuho, N., Miura, Y., Hayashi, H., Nei, T., Fujita, K., and Saito, Y. (2014). Pirfenidone inhibits fibrocyte accumulation in the lungs in bleomycin-induced murine pulmonary fibrosis. Respiratory research 15, 16. Ito, S., Ansari, P., Sakatsume, M., Dickensheets, H., Vazquez, N., Donnelly, R.P., Larner, A.C., and Finbloom, D.S. (1999). Interleukin-10 Inhibits Expression of Both Interferon γ–and Interferon γ–Induced Genes by Suppressing Tyrosine Phosphorylation of STAT1. Blood 93, 1456-1463. Izbicki, G., Segel, M., Christensen, T., Conner, M., and Breuer, R. (2002). Time course of bleomycin‐induced lung fibrosis. International journal of experimental pathology 83, 111-119. Jenkins, R.G., Su, X., Su, G., Scotton, C.J., Camerer, E., Laurent, G.J., Davis, G.E., Chambers, R.C., Matthay, M.A., and Sheppard, D. (2006). Ligation of protease-activated receptor 1 enhances α v β 6 integrin–dependent TGF-β activation and promotes acute lung injury. The Journal of clinical investigation 116, 1606-1614. Jimenez, S., Freundlich, B., and Rosenbloom, J. (1984). Selective inhibition of human diploid fibroblast collagen synthesis by interferons. The Journal of clinical investigation 74, 1112-1116. Keane, M.P., Belperio, J.A., Arenberg, D.A., Burdick, M.D., Xu, Z.J., Xue, Y.Y., and Strieter, R.M. (1999). IFN-γ-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. The journal of immunology 163, 5686-5692. King Jr, T.E., Bradford, W.Z., Castro-Bernardini, S., Fagan, E.A., Glaspole, I., Glassberg, M.K., Gorina, E., Hopkins, P.M., Kardatzke, D., and Lancaster, L. (2014). A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. New England Journal of Medicine 370, 2083-2092. King Jr, T.E., Pardo, A., and Selman, M. (2011). Idiopathic pulmonary fibrosis. The Lancet 378, 1949-1961. Klingberg, F., Hinz, B., and White, E.S. (2013). The myofibroblast matrix: implications for tissue repair and fibrosis. The Journal of pathology 229, 298-309. Kolahian, S., Fernandez, I.E., Eickelberg, O., and Hartl, D. (2016). Immune mechanisms in pulmonary fibrosis. American journal of respiratory cell and molecular biology 55, 309-322. Lai, C.-C., Wang, C.-Y., Lu, H.-M., Chen, L., Teng, N.-C., Yan, Y.-H., Wang, J.-Y., Chang, Y.-T., Chao, T.-T., and Lin, H.-I. (2012). Idiopathic pulmonary fibrosis in Taiwan–a population-based study. Respiratory medicine 106, 1566-1574. Lasithiotaki, I., Giannarakis, I., Tsitoura, E., Samara, K.D., Margaritopoulos, G.A., Choulaki, C., Vasarmidi, E., Tzanakis, N., Voloudaki, A., and Sidiropoulos, P. (2016). NLRP3 inflammasome expression in idiopathic pulmonary fibrosis and rheumatoid lung. European Respiratory Journal 47, 910-918. Lederer, D.J., and Martinez, F.J. (2018). Idiopathic Pulmonary Fibrosis. New England Journal of Medicine 378, 1811-1823. Lin, C.-F., Lin, C.-M., Lee, K.-Y., Wu, S.-Y., Feng, P.-H., Chen, K.-Y., Chuang, H.-C., Chen, C.-L., Wang, Y.-C., and Tseng, P.-C. (2017). Escape from IFN-γ-dependent immunosurveillance in tumorigenesis. Journal of biomedical science 24, 10. Liu, B., Liao, J., Rao, X., Kushner, S.A., Chung, C.D., Chang, D.D., and Shuai, K. (1998). Inhibition of Stat1-mediated gene activation by PIAS1. Proceedings of the National Academy of Sciences 95, 10626-10631. Liu, R.-M., and Desai, L.P. (2015). Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox biology 6, 565-577. Maher, T.M., Wells, A., and Laurent, G. (2007). Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms? European Respiratory Journal 30, 835-839. Martinez, F.J., Collard, H.R., Pardo, A., Raghu, G., Richeldi, L., Selman, M., Swigris, J.J., Taniguchi, H., and Wells, A.U. (2017). Idiopathic pulmonary fibrosis. Nature reviews Disease primers 3, 17074. Milara, J., Hernandez, G., Ballester, B., Morell, A., Roger, I., Montero, P., Escrivá, J., Lloris, J.M., Molina-Molina, M., and Morcillo, E. (2018). The JAK2 pathway is activated in idiopathic pulmonary fibrosis. Respiratory research 19, 24. Moeller, A., Ask, K., Warburton, D., Gauldie, J., and Kolb, M. (2008). The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? The international journal of biochemistry & cell biology 40, 362-382. Mora, A.L., Rojas, M., Pardo, A., and Selman, M. (2017). Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nature reviews Drug discovery 16, 755. Noble, P.W., Albera, C., Bradford, W.Z., Costabel, U., Glassberg, M.K., Kardatzke, D., King Jr, T.E., Lancaster, L., Sahn, S.A., and Szwarcberg, J. (2011). Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. The Lancet 377, 1760-1769. O’Beirne, S.L., Walsh, S.M., Fabre, A., Reviriego, C., Worrell, J.C., Counihan, I.P., Lumsden, R.V., Cramton-Barnes, J., Belperio, J.A., and Donnelly, S.C. (2015). CXCL9 Regulates TGF-β1–Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells. The Journal of Immunology, 1402008. Oku, H., Shimizu, T., Kawabata, T., Nagira, M., Hikita, I., Ueyama, A., Matsushima, S., Torii, M., and Arimura, A. (2008). Antifibrotic action of pirfenidone and prednisolone: different effects on pulmonary cytokines and growth factors in bleomycin-induced murine pulmonary fibrosis. European journal of pharmacology 590, 400-408. Park, S.J., Kim, H.Y., Kim, H., Park, S.M., Joe, E.-h., Jou, I., and Choi, Y.-H. (2009). Oxidative stress induces lipid-raft-mediated activation of Src homology 2 domain-containing protein-tyrosine phosphatase 2 in astrocytes. Free Radical Biology and Medicine 46, 1694-1702. Pedroza, M., Le, T.T., Lewis, K., Karmouty-Quintana, H., To, S., George, A.T., Blackburn, M.R., Tweardy, D.J., and Agarwal, S.K. (2015). STAT-3 contributes to pulmonary fibrosis through epithelial injury and fibroblast-myofibroblast differentiation. The FASEB Journal 30, 129-140. Pedroza, M., Schneider, D.J., Karmouty-Quintana, H., Coote, J., Shaw, S., Corrigan, R., Molina, J.G., Alcorn, J.L., Galas, D., and Gelinas, R. (2011). Interleukin-6 contributes to inflammation and remodeling in a model of adenosine mediated lung injury. PloS one 6, e22667. Phan, S.H. (2002). The myofibroblast in pulmonary fibrosis. Chest 122, 286S-289S. Platanias, L.C. (2005). Mechanisms of type-I-and type-II-interferon-mediated signalling. Nature Reviews Immunology 5, 375. Raghu, G., Collard, H.R., Egan, J.J., Martinez, F.J., Behr, J., Brown, K.K., Colby, T.V., Cordier, J.-F., Flaherty, K.R., and Lasky, J.A. (2011). An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. American journal of respiratory and critical care medicine 183, 788-824. Raghu, G., Rochwerg, B., Zhang, Y., Garcia, C.A.C., Azuma, A., Behr, J., Brozek, J.L., Collard, H.R., Cunningham, W., and Homma, S. (2015). An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. American journal of respiratory and critical care medicine 192, e3-e19. Ramos, C., Montaño, M., Garcı́a-Alvarez, J., Ruiz, V.c., Uhal, B.D., Selman, M., and Pardo, A. (2001). Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. American journal of respiratory cell and molecular biology 24, 591-598. Richeldi, L., Collard, H.R., and Jones, M.G. (2017). Idiopathic pulmonary fibrosis. The Lancet 389, 1941-1952. Richeldi, L., Du Bois, R.M., Raghu, G., Azuma, A., Brown, K.K., Costabel, U., Cottin, V., Flaherty, K.R., Hansell, D.M., and Inoue, Y. (2014). Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. New England Journal of Medicine 370, 2071-2082. Rifkin, D.B., and Sheppard, D. (1999). The integrin v 6 binds and activates latent TGF 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319-328. Roach, K.M., Sutcliffe, A., Matthews, L., Elliott, G., Newby, C., Amrani, Y., and Bradding, P. (2018). A model of human lung fibrogenesis for the assessment of anti-fibrotic strategies in idiopathic pulmonary fibrosis. Scientific reports 8, 342. Roberts, A.B., Russo, A., Felici, A., and Flanders, K.C. (2003). Smad3: a key player in pathogenetic mechanisms dependent on TGF‐β. Annals of the New York Academy of Sciences 995, 1-10. Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103, 211-225. Schroder, K., Hertzog, P.J., Ravasi, T., and Hume, D.A. (2004). Interferon‐γ: an overview of signals, mechanisms and functions. Journal of leukocyte biology 75, 163-189. Sebti, S.M., Mignano, J.E., Jani, J.P., Srimatkandada, S., and Lazo, J.S. (1989). Bleomycin hydrolase: molecular cloning, sequencing, and biochemical studies reveal membership in the cysteine proteinase family. Biochemistry 28, 6544-6548. Shao, D.D., Suresh, R., Vakil, V., Gomer, R.H., and Pilling, D. (2008). Pivotal advance: Th‐1 cytokines inhibit, and Th‐2 cytokines promote fibrocyte differentiation. Journal of leukocyte biology 83, 1323-1333. Shuai, K., and Liu, B. (2005). Regulation of gene-activation pathways by PIAS proteins in the immune system. Nature Reviews Immunology 5, 593. Sime, P.J., Xing, Z., Graham, F.L., Csaky, K.G., and Gauldie, J. (1997). Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. The Journal of clinical investigation 100, 768-776. Song, M.M., and Shuai, K. (1998). The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. Journal of Biological Chemistry 273, 35056-35062. Stubbe, J., and Kozarich, J.W. (1987). Mechanisms of bleomycin-induced DNA degradation. Chemical reviews 87, 1107-1136. Taga, T., Hibi, M., Hirata, Y., Yamasaki, K., Yasukawa, K., Matsuda, T., Hirano, T., and Kishimoto, T. (1989). Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58, 573-581. Tager, A.M., Kradin, R.L., LaCamera, P., Bercury, S.D., Campanella, G.S., Leary, C.P., Polosukhin, V., Zhao, L.-H., Sakamoto, H., and Blackwell, T.S. (2004). Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10. American journal of respiratory cell and molecular biology 31, 395-404. Taniguchi, H., Ebina, M., Kondoh, Y., Ogura, T., Azuma, A., Suga, M., Taguchi, Y., Takahashi, H., Nakata, K., and Sato, A. (2010). Pirfenidone in idiopathic pulmonary fibrosis. European Respiratory Journal 35, 821-829. Thrall, R., McCormick, J., Jack, R., McReynolds, R., and Ward, P. (1979). Bleomycin-induced pulmonary fibrosis in the rat: inhibition by indomethacin. The American journal of pathology 95, 117. Tsai, C.-C., Kai, J.-I., Huang, W.-C., Wang, C.-Y., Wang, Y., Chen, C.-L., Fang, Y.-T., Lin, Y.-S., Anderson, R., and Chen, S.-H. (2009). Glycogen synthase kinase-3β facilitates IFN-γ-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. The Journal of Immunology, jimmunol. 0804033. Tseng, P.-C., Huang, W.-C., Chen, C.-L., Sheu, B.-S., Shan, Y.-S., Tsai, C.-C., Wang, C.-Y., Chen, S.-O., Hsieh, C.-Y., and Lin, C.-F. (2012). Regulation of SHP2 by PTEN/AKT/GSK-3β signaling facilitates IFN-γ resistance in hyperproliferating gastric cancer. Immunobiology 217, 926-934. Ulloa, L., Doody, J., and Massagué, J. (1999). Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway. Nature 397, 710. Vancheri, C., Failla, M., Crimi, N., and Raghu, G. (2010). Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. European Respiratory Journal 35, 496-504. Williams, S.D., Birch, R., Einhorn, L.H., Irwin, L., Greco, F.A., and Loehrer, P.J. (1987). Treatment of disseminated germ-cell tumors with cisplatin, bleomycin, and either vinblastine or etoposide. New England Journal of Medicine 316, 1435-1440. Willis, B.C., and Borok, Z. (2007). TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. American Journal of Physiology-Lung Cellular and Molecular Physiology 293, L525-L534. Wollin, L., Maillet, I., Quesniaux, V., Holweg, A., and Ryffel, B. (2014). Antifibrotic and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in experimental models of lung fibrosis. Journal of Pharmacology and Experimental Therapeutics 349, 209-220. Wollin, L., Wex, E., Pautsch, A., Schnapp, G., Hostettler, K.E., Stowasser, S., and Kolb, M. (2015). Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. European Respiratory Journal 45, 1434-1445. Wolters, P.J., Collard, H.R., and Jones, K.D. (2014). Pathogenesis of idiopathic pulmonary fibrosis. Annual Review of Pathology: Mechanisms of Disease 9, 157-179. Wynn, T.A. (2011). Integrating mechanisms of pulmonary fibrosis. Journal of Experimental Medicine 208, 1339-1350. Xia, H., Diebold, D., Nho, R., Perlman, D., Kleidon, J., Kahm, J., Avdulov, S., Peterson, M., Nerva, J., and Bitterman, P. (2008). Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. Journal of Experimental Medicine 205, 1659-1672. You, M., Yu, D.-H., and Feng, G.-S. (1999). Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Molecular and cellular biology 19, 2416-2424. Yun, J.H., Park, S.J., Jo, A., Kang, J.L., Jou, I., Park, J.S., and Choi, Y.-H. (2011). Caveolin-1 is involved in reactive oxygen species-induced SHP-2 activation in astrocytes. Experimental & molecular medicine 43, 660. Zehender, A., Huang, J., Györfi, A.-H., Matei, A.-E., Trinh-Minh, T., Xu, X., Li, Y.-N., Chen, C.-W., Lin, J., and Dees, C. (2018). The tyrosine phosphatase SHP2 controls TGFβ-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nature communications 9, 3259. Zhang, L., Badgwell, D.B., Bevers, J.J., Schlessinger, K., Murray, P.J., Levy, D.E., and Watowich, S.S. (2006). IL-6 signaling via the STAT3/SOCS3 pathway: functional analysis of the conserved STAT3 N-domain. Molecular and cellular biochemistry 288, 179-189. Zhong, Z., Wen, Z., and Darnell, J.E. (1994). Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95-98.
|