跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 09:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范秀姿
研究生(外文):Hsiu-Tzu Fan
論文名稱:迷你及早開花蝴蝶蘭轉殖系統之建立- GA2ox6及早開花基因OSMADS14之應用
論文名稱(外文):Establishment of transformation system for mini and early flowering gene in phalaenopsis Orchid- applications of GA2ox6 and OsMADS14
指導教授:陳良築
指導教授(外文):Liang--Jwu Chen
口試委員:鍾美珠楊明德
口試委員(外文):Mei-Chu ChungMing-Te Yang
口試日期:2014-01-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:59
中文關鍵詞:蝴蝶蘭轉殖迷你早開花
外文關鍵詞:phalenopsisOsGA2ox6mini and early flowering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
蝴蝶蘭屬 (Phalaenopsis)的花形漂亮,花色豔麗,花期長,多為觀賞佈置等商業用途。台灣因地理環境因素適合栽種蝴蝶蘭,不僅為我國外銷出口重要花卉之一,更使得台灣享有「蝴蝶蘭王國」的美名。蘭花主要是以雜交育種方式來增添其多樣性,近年來有不少研究利用基因轉殖技術或誘變方法改變蝴蝶蘭花色及外表形態,但卻少有針對植株大小做改變。在前人研究中發現,轉殖GA2-oxidase 基因的作物具有矮小迷你的外表形態,並有多根、多分蘗的情形出現;蝴蝶蘭花期長,但也因幼年期與生殖週期較長,培育過程中往往需要耗費較多人力物力照顧,相對提高種植成本。在過去研究中發現 MADS-box 基因具有調控花器與分生組織的功能,使得作物有早開花的情形發生,因此本試驗以攜帶矮小基因 (Ubi-GA2ox6)及早開花基因 (Ubi-MADS14)之農桿菌對蝴蝶蘭進行感染,建立基因轉殖系統。 在研究中共使用 6550 棵未轉殖之擬原球體以每盤30 – 40 棵為單位,分別進行農桿菌感染,最後得到 3 棵 GA2ox6 再生植株。這 3 棵再生殖株與同時期的未轉殖株相比,具有矮小、根多、葉片小且葉片較深等外表型態。擷取其葉片與根尖進行 GUS 活性分析,在組織中出現很明顯的藍色。進一步抽取其 DNA 和 RNA 利用 PCR 進行分析,發現這 3 棵再生植株皆具有 GUS、Hyg 及目標基因- GA2ox6,因此確定為 GA2ox6 轉殖株。在南方點墨實驗結果中得知,轉殖株 2 號具有兩個copy,轉殖株 1 號及 3 號僅有一個。
The flowers of Phalaenopsis orchid have beautiful shape, brightly colors with long flowering period, are mostly used for commercial purposes, such as ornamental layout. Due to the semi-tropical location and climate condition, Taiwan becomes the most appropriate location for planting orchids and this makes orchids the most important export flowers in Taiwan, and consequently makes Taiwan as the "Orchid Kingdom" in the world. The diversities of orchid were mainly crossbred in the past; however many studies using transgenic or mutagenesis methods to change the color and/or appearance of the orchid morphology have been reported recently. Among them, few were used to change the plant architectures. In order to minimize and create novel orchid architectures, a rice OsGA2ox6 gene, involved in GA biosynthesis and when it over-expressed it could produce semi-dwarf plants with multiple shoots and roots, was used in this study. In addition to the long flowering period, the Phalaenopsis orchids have at least 2 to 3 year of growth period to reach the flowering stage, therefore more planting costs were needed. In order to shorten the time need before flowering, a MADS-box gene, MADS14, involved in the regulation of floral initiation and early flowering, was used under the control of a ubiquitin promoter as well. In this study, totally 6550 protocorm-like bodies (PLBs) were transformed by pCAM1301、 pCAM1301-Ubi-GA2ox6 and pCAM1301-Ubi-MADS14 vectors respectively. After hygromycin selection, three regenerated orchid plants from pCAM1301-Ubi-GA2ox6 were obtained and named as GA-1、GA-2 and GA-3, respectively. Comparing to the non-transgenic orchid, these regenerated orchids show dwarfism, multiple shoots and roots, and have smaller and dark-green leaf. All three regenerated orchids show GUS activity in examined leaf and root tissues. Genomic PCR analysis demonstrated that these three regenerated orchids contain the GUS and hptII genes and the GA2ox6 transgene as well. RNA expressions of the GA2ox6 transgene in these three regenerated orchids were detected by RT-PCR and showed the same expression levels among them. Southern blot assay showed these three regenerated orchids were independent transgenic orchid lines with one copy of T-DNA insertion in both GA-1 and GA-3, and two copies of T-DNA insertion in GA-2 line.
中文摘要•••••••••••••••••••••••••••ⅰ
英文摘要•••••••••••••••••••••••••••ⅱ
目錄••••••••••••••••••••••••••ⅲ
圖表目錄•••••••••••••••••••••••••••ⅵ
附錄••••••••••••••••••••••••••ⅷ
縮寫字對照•••••••••••••••••••••••••••ⅸ
前言••••••••••••••••••••••••••1
前人研究•••••••••••••••••••••••••••3
一、蝴蝶蘭簡介•••••••••••••••••••••••••••3
(一)、蝴蝶蘭分類•••••••••••••••••••••••••••3
(二)、蝴蝶蘭生長方式•••••••••••••••••••••••••••4
(三)、蝴蝶蘭生長習性及開花條件•••••••••••••••••••••••••••4
二、蝴蝶蘭市場需求•••••••••••••••••••••••••••5
三、蝴蝶蘭轉殖•••••••••••••••••••••••••••6
(一)、基因槍轉殖•••••••••••••••••••••••••••6
(二)、農桿菌轉殖•••••••••••••••••••••••••••7
四、OsGA2OX6功能分析及研究•••••••••••••••••••••••••••7
五、OsMADS14功能分析及研究•••••••••••••••••••••••••••8
材料與方法•••••••••••••••••••••••••••11
一、儀器及設備••••••••••••••••••••••••••11
二、藥品••••••••••••••••••••••••••11
三、試驗材料••••••••••••••••••••••••••11
(一)、蝴蝶蘭品種來源••••••••••••••••••••••••••11
(二)、農桿菌質體構築••••••••••••••••••••••••••11
四、培養基••••••••••••••••••••••••••12
(一)、微生物培養基••••••••••••••••••••••••••12
(二)、蘭花培養基••••••••••••••••••••••••••12
五、蝴蝶蘭基因轉殖及再生流程••••••••••••••••••••••••••13
(一)、蝴蝶蘭擬原球體再生••••••••••••••••••••••••••13
(二)、農桿菌培養••••••••••••••••••••••••••13
(三)、蝴蝶蘭之基因轉殖••••••••••••••••••••••••••14
(四)、蝴蝶蘭之再生篩選••••••••••••••••••••••••••14
六、蘭花轉殖株基因分析••••••••••••••••••••••••••14
(一)、轉殖株基因組DNA之萃取••••••••••••••••••••••••••14
(二)、聚合酶連鎖反應••••••••••••••••••••••••••15
(三)、南方點墨分析法••••••••••••••••••••••••••15
七、蘭花轉殖株基因偵測表現••••••••••••••••••••••••••17
(一)、轉殖株Total RNA之萃取••••••••••••••••••••••••••17
(二)、反轉錄聚合酶連鎖反應••••••••••••••••••••••••••17
(三)、基因表現量偵測之聚合酶連鎖反應•••••••••••••••••18
八、蘭花轉殖株 GUS 基因偵測表現••••••••••••••••••••••••18
九、蘭花轉殖株處理Gibberellin (GA)•••••••••••••••18
(一)、以Gibberellin處理轉殖株••••••••••••••••••••••••18
(二)、轉殖株擬原球體 (PLB)處理Gibberellin•••19
結果•••••••••••••••••••••••20
一、蝴蝶蘭組織培養再生系統建立••••••••••••••••••••••••••••20
二、蝴蝶蘭轉殖系統之建立•••••••••••••••••••••••••••20
(一)、抗生素篩選•••••••••••••••••••••••••••20
(二)、蝴蝶蘭轉殖篩選流程之建立•••••••••••••••••••••••••••21
(三)、以Hygromycin篩選蝴蝶蘭再生轉殖株•••••••••••22
三、蝴蝶蘭再生植株之外表性狀••••••••••••••••••••••••••22
四、蝴蝶蘭再生植株基因轉殖之偵測•••••••••••••••••••••••••23
(一)、再生植株GUS基因表現•••••••••••••••••••••••••23
(二)、再生植株轉殖基因分析•••••••••••••••••••••••••23
(三)、GA2ox6轉殖株Southern blot分析••••••••••••••23
(四)、再生植株RNA分析表現•••••••••••••••••••••••••24
五、蝴蝶蘭轉殖株處理Gibberellin (GA)之表現••••••25
六、蝴蝶蘭轉殖株 PLB 處理Gibberellin (GA)之表現•••••••••••••••25
討論••••••••••••••••••••••••26
一、蝴蝶蘭組織培養再生系統建立•••••••••••••••••••••••••26
二、蝴蝶蘭轉殖株之外表性狀觀察•••••••••••••••••••••••••26
三、蝴蝶蘭轉殖株及PLB處理Gibberellin之結果分析••••••••••••••••••27
四、結論與檢討•••••••••••••••••••••••••28
參考文獻••••••••••••••••••••••30
尤崇魁,蝴蝶蘭栽培技術,園藝世界出版社 (1989)。

黃重銘、林春良。2010。台灣蝴蝶蘭新品種育種成果。農政與農情215: 50-54。

魏芳明。2012。蘭花雜交育種障礙之探討。台中區農業改良場101年專題討論專
集。

陳文輝。2002。蝴蝶蘭的品種改良。科學發展351期。

林雅亭。1999。蝴蝶蘭苯基苯乙烯酮合成酶基因轉殖之研究。國立台灣大學園藝
學研究所碩士論文。

林讚標,台灣蘭科植物,南天書局有限公司 (1988)。

李淑華。2000。文心蘭體胚分化及基因轉殖系統之研究。國立成功大學生物科技
研究所碩士論文。

葉育哲。2010。蝴蝶蘭原生種簡介。花蓮區農業專訊第七十一期3月號。

葉志新、廖芳心、鄭隨和。2011。蝴蝶蘭品種染色體數及型態分析。桃園區農業
改良場研究彙報69:47-58。

葉志新、李淑真、廖芳心、葉育哲、蔡月夏。2011。蝴蝶蘭之雜交育種。花卉研
究團隊成果發表會專刊。

楊玉婷。2010。全球蘭花發展現況與未來展望兼論我國蝴蝶蘭與文心蘭發展策略。
生物經濟與科技前瞻 第33卷第3期。

徐善德、沈再木、陳福旗。2010。台灣蝴蝶蘭產業優勢技術之開發。花卉研究團
隊研究現況與展望研討會專刊

林威嘉。2007。蘭花產業之智慧資源規劃。

陳慧真。2003。蝴蝶蘭以農桿菌媒介基因轉殖之研究。國立高雄師範大學生物科
學研究所碩士論文。

蘇維仁。2003。非誘導開花之高溫條件下蝴蝶蘭花梗內生性GAs含量之變化。
國立中山大學生物科學系研究所碩士論文。

何慧敏。2006。蝴蝶蘭花粉與農桿菌共培養基因轉殖系統之建立。朝陽科技大學
生物技術研究所。

鄭芳宜。2003。蝴蝶蘭及文心蘭基因轉殖之研究。國立台灣大學園藝學研究所碩
士論文。

蝴蝶蘭栽培手冊,台灣糖業公司農務處和糖業研究所 合編 (1989)。

Aceto S, 2011. The MADS and the Beauty: Genes Involved in the Development of Orchid Flowers. Current Genomics, 342-56.

Appleford NE, Wilkinson MD, Ma Q, et al., 2007. Decreased shoot stature and grain alpha-amylase activity following ectopic expression of a gibberellin 2-oxidase gene in transgenic wheat. J Exp Bot 58, 3213-26.

Aswath CR, Mo SY, Kim S-H, Kim DH, 2004. IbMADS4 regulates the vegetative shoot development in transgenic chrysanthemum (Dendrathema grandiflora (Ramat.) Kitamura). Plant Science 166, 847-54.

Becker A, 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution 29, 464-89.

Berbel A, 2001. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. The Plant Journal, 441-51.

Burko Y, Shleizer-Burko S, Yanai O, et al., 2013. A role for APETALA1/fruitfull transcription factors in tomato leaf development. Plant Cell 25, 2070-83.

Chan M-T, 2006. Orchids (Cymbidium spp., Oncidium, and Phalaenopsis). Methods in Molecular Biology, .

Chan Y-L, Lin K-H, Sanjaya, Liao L-J, Chen W-H, Chan M-T, 2005. Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Research 14, 279-88.

Chang YY, Kao NH, Li JY, et al., 2010. Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152, 837-53.

Cheikh N, 1992. Regulation of sucrose phosphate synthase by gibberellins in soybean and spinach plants. Plant Physiol., 1238-42.

Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH, 2011a. The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J 68, 168-85.

Chen WH, Hsu CY, Cheng HY, Chang H, Chen HH, Ger MJ, 2011b. Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Rep 30, 1007-17.

Chi Y, Huang F, Liu H, Yang S, Yu D, 2011. An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. J Plant Physiol 168, 2251-9.

Chin DP, Mishiba K, Mii M, 2007. Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium. Plant Cell Rep 26, 735-43.

Cui R, Han J, Zhao S, et al., 2010. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61, 767-81.

Dan Y, Baxter A, Zhang S, Pantazis CJ, Veilleux RE, 2010. Development of efficient plant regeneration and transformation system for impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants. BMC Plant Biol 10, 165.

Dijkstra C, Adams E, Bhattacharya A, et al., 2008. Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Rep 27, 463-70.

Ding L, Wang Y, Yu H, 2013. Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile. Plant Cell Physiol 54, 595-608.

El-Sharkawy I, El Kayal W, Prasath D, et al., 2012. Identification and genetic characterization of a gibberellin 2-oxidase gene that controls tree stature and reproductive growth in plum. J Exp Bot 63, 1225-39.

Fukui M, 2001. Ancestral MADS Box Genes in Sugi, Cryptomeria japonica D. Don (Taxodiaceae), Homologous to the B Function Genes in Angiosperms. Plant Cell Physiol. 42(6), 566-75.

Gelvin SB, 2000. Agrobacterium And Plant Genes Involved In T-DNA Transfer And Interation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 223-56.

Gu Q, 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509-17.

Han F, Zhu B, 2011. Evolutionary analysis of three gibberellin oxidase genes in rice, Arabidopsis, and soybean. Gene 473, 23-35.

Hsiao YY, Pan ZJ, Hsu CC, et al., 2011. Research on orchid biology and biotechnology. Plant Cell Physiol 52, 1467-86.

Hsu H-F, 2002. An Orchid (Oncidium Gower Ramsey) AP3-like MADS Gene Regulates Floral Formation and Initiation. plant Cell Physiol. 43(10), 1198-209.

Jang S, 2002. Characterization of tobacco mads-box genes involved in floral initiation. Plant Cell Physiol 43(1), 230-8.

Jong-Seong Jeon, 2000. MADS-box gene reduce heading day and plant height by ectopic expression of rice MADS-box genes. Molecular Breeding, 581-92.

Kater MM, Dreni L, Colombo L, 2006. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57, 3433-44.

Krizek BA, 1996. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development. 122, 11-22.

Li Z, Zhang J, Liu G, et al., 2012a. Phylogenetic and evolutionary analysis of A-, B-, C- and E-class MADS-box genes in the basal eudicot Platanus acerifolia. J Plant Res 125, 381-93.

Li ZY, Xu ZS, He GY, et al., 2012b. Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis. Biochem Biophys Res Commun 427, 731-6.

Lin CC, Chu CF, Liu PH, et al., 2011. Expression of an Oncidium gene encoding a patatin-like protein delays flowering in Arabidopsis by reducing gibberellin synthesis. Plant Cell Physiol 52, 421-35.

Liu C, Zhang J, Zhang N, et al., 2010. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Mol Biol Evol 27, 1598-611.

Lo SF, Yang SY, Chen KT, et al., 2008. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20, 2603-18.

Men S, Ming X, Wang Y, Liu R, Wei C, Li Y, 2003. Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep 21, 592-8.

Mishiba K, Chin DP, Mii M, 2005. Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Rep 24, 297-303.

Moon Y-H, 1999. Determination of the Motif Responsible for Interaction between the Rice APETALA1 AGAMOUS LIKE9 Family Proteins Using a Yeast Two-Hybrid System. Plant Physiol 120, 1193-203.

Niki T, Hisamatsu T, Aida R, Koshioka M, Nishijima T. Production of dwarf plant bygenetic engineering in transgenic torenia introduced GA 2-oxidase gene fromTorenia. In: Abstracts of 27th International Horticultural Congress and Exhibi-tion; 2006. p. 338.

Otani M, Meguro S, Gondaira H, et al., 2013. Overexpression of the gibberellin 2-oxidase gene from Torenia fournieri induces dwarf phenotypes in the liliaceous monocotyledon Tricyrtis sp. J Plant Physiol 170, 1416-23.

Porri A, Torti S, Romera-Branchat M, Coupland G, 2012. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139, 2198-209.

Rijpkema AS, Royaert S, Zethof J, Van Der Weerden G, Gerats T, Vandenbussche M, 2006. Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage. Plant Cell 18, 1819-32.

Ruokolainen S, Ng YP, Albert VA, Elomaa P, Teeri TH, 2011. Over-expression of the Gerbera hybrida At-SOC1-like1 gene Gh-SOC1 leads to floral organ identity deterioration. Ann Bot 107, 1491-9.

Saedler H, 2001. MADS-box genes are involved in floral development and evolution.
Schomburg FM, 2002. Overexpression of a Novel Class of Gibberellin 2-Oxidases Decreases Gibberellin Levels and Creates Dwarf Plants. The Plant Cell Online 15, 151-63.

Serrani JC, Sanjuan R, Ruiz-Rivero O, Fos M, Garcia-Martinez JL, 2007. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145, 246-57.

Shchennikova AV, Shul'ga OA, Sizeneva ES, Perkovskaya NI, Skryabin KG, 2011. Diversification of functional activity of the chrysanthemum homeotic MADS-box gene CDM37. Dokl Biochem Biophys 436, 29-31.

Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC, 2004. Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol 134, 1632-41.

Sheikholeslam SN, 1987. Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Molecular Biology 8, 291-8.

Shulga OA, Mitiouchkina TY, Shchennikova AV, Skryabin KG, Dolgov SV, 2011. Overexpression of AP1-like genes from Asteraceae induces early-flowering in transgenic Chrysanthemum plants. In Vitro Cellular & Developmental Biology - Plant 47, 553-60.

Silva JaTD, 2003. Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotechnology Advances.

Singh DP, Filardo FF, Storey R, Jermakow AM, Yamaguchi S, Swain SM, 2010. Overexpression of a gibberellin inactivation gene alters seed development, KNOX gene expression, and plant development in Arabidopsis. Physiol Plant 138, 74-90.

Southerton SG, 1998. Eucalypt MADS-Box Genes Expressed in Developing Flowers.
Su CL, Chao YT, Alex Chang YC, et al., 2011. De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 52, 1501-14.

Suo H, Ma Q, Ye K, et al., 2012. Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L.) Merr]. PLoS One 7, e45568.

Suzuki S, 2001. Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Science 161, 89-97.

Teixeira Da Silva JA, Chin DP, Van PT, Mii M, 2011. Transgenic orchids. Scientia Horticulturae 130, 673-80.

Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES, 2003. MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci U S A 100, 13099-104.

Tsavkelova EA, Bomke C, Netrusov AI, Weiner J, Tudzynski B, 2008. Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genet Biol 45, 1393-403.

Valentine L, 2003. Agrobacterium tumefaciens and the plant: the David and Goliath of modern genetics. Plant Physiol 133, 948-55.

Wang GK, Zhang M, Gong JF, Guo QF, Feng YN, Wang W, 2012. Increased gibberellin contents contribute to accelerated growth and development of transgenic tobacco overexpressing a wheat ubiquitin gene. Plant Cell Rep 31, 2215-27.

Yancheva SD, Golubowicz S, Yablowicz Z, Perl A, Flaishman MA, 2005. Efficient Agrobacterium-mediated transformation and recovery of transgenic fig (Ficus carica L.) plants. Plant Science 168, 1433-41.

Yu Z, 1999. Recovery of transgenic orchid plants with hygromycin selection by particle bombardment to protocorms. Plant Cell, Tissue and Organ Culture 58, 87-92.

Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V, 2011. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. Planta 234, 1285-98.

Zsuzsanna Schwarz-Sommer, 1990. Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science 250, 931-6.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top