跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 14:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林立家
研究生(外文):Li-Chia Lin
論文名稱:用於可選擇式多輸出直流-直流轉換器之改良雙相位交錯式電荷幫浦技術
論文名稱(外文):Improved Dual Phase Cross-Coupled Charge Pump Techniques for Selectable Multi-Output DC-DC Converters
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Ke-Horng Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:78
中文關鍵詞:電荷幫浦多輸出交錯式負壓電荷幫浦直流-直流轉換器
外文關鍵詞:charge pumpmulti-outputcross-couplednegative charge pumpDC-DC Converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
液晶顯示面版越來越普及,應用的範圍越來越廣。從掌上型電玩,手機等小型液晶顯示面版到液晶電視甚至戶外液晶顯示看板之大型液晶顯示面版。因此液晶面版的電源供應也越來越重要。電源供應區塊也希望能夠整合至驅動電路之內,因此朝著縮小晶片面積以及外部元件的縮小方向前進。
液晶顯示器的電源需要多組不同位准的電壓來對液晶進行充放電的動作。而在直流電壓轉換器當中,電感式直流電壓轉換器需要外部元件電感,而電荷幫浦需要外部元件電容。比較之下,電感較電容佔較大面積,而在應用上,液晶顯示面版需要一個負的電壓位准來對液晶電容做放電動作,電感式直流電壓轉換器無法產生負的電壓位准。因此在成本與面積的考量之下,我們利用電荷幫浦取代了常見的電感式直流電壓轉換器。而電荷幫浦在操作時會產生的漣波利用改良式的雙相位交錯式電荷幫浦架構來減少漣波。
本論文實現了一個使用改良的雙相位控制電荷幫浦對輸出做可切換式選擇的多輸出直流-直流電源轉換器。輸入為10V的高電壓,可以提供四組不同的電壓選擇,分別為10V、20V、-10V以及0V,最大電流負載為50mA。利用TSMC 0.25um BCD 2.5V/5V/12V/40V 1P5M 製程進行模擬以及製作驗證。
LCD panels are going more and more popular. The applications of the LCD panels are widely spread in our daily life. From the small LCD panels on palmtop entertainment machine and cell phone to the large LCD panels on LCD TV or outdoor display screen. Therefore, the power supply blocks for LCD panels are more and more important. The needs to integrate the power supply block into the LCD driver circuits are rise in great demands. In other words, it is necessary to reduce the size of the power supply block chip and reduce the number of the external components.
The power sources for LCD panels need different voltage scale to charge and discharge the liquid crystal capacitors. Among the DC-DC power converters, inductive switching converters need external components as inductors and charge pumps need external components as capacitors. Compare these two external components inductors and capacitors, inductors occupy larger board area than that of capacitors. Besides, LCDs need a negative voltage to discharge the liquid crystal capacitors. It is difficult for Inductive switching converters to generate a negative voltage. Therefore, for cost and area considerations, we use charge pumps to replace inductive switching converters. In this thesis, the ripple of the charge pump is further reduced by an improved double phase cross-coupled charge pump structure.
This thesis implements a switchable multi output DC-DC converter utilize improved dual phase cross-coupled charge pumps. The input voltage is a high voltage 10V. The circuit can supply 4 different output voltages, 10V, 20V, -10V and 0V. The maximum current load is 50mA. The chip is simulated and fabricated by TSMC 0.25um 2.5V/5V/12V/40V 1P5M BCD process CMOS technology.
Chapter 1
Introduction
1.1 Background……………………………………………1
1.2 Overview of DC-DC converters……………………2
1.2.1 Linear Regulators……………………………………2
1.2.2 Switching Regulators…………………………………6
1.2.3 Charge Pumps……………………………………………9
1.3 Motivation………………………………………………11
1.4 Thesis Organization…………………………………11

Chapter 2
Review of Charge Pumps
2.1 Introduction…………………………………………13
2.1.1 Charge Redistribution……………………………………14
2.2 Different Charge Pump Circuits…………………15
2.2.1 Cockcroft-Walton Charge Pump………………………15
2.2.2 Dickson Charge Pump…………………………………17
2.2.3 4-Phase Charge Pump…………………………………20
2.2.4 Static CTS Charge Pump……………………………22
2.2.5 Dynamic CTS Charge Pump……………………………24
2.2.6 Favrat Voltage Doubler……………………………26
2.3 Negative Charge Pump………………………………29
2.3.1 Conventional Negative Charge Pump………………29
2.3.2 Negative Charge Pump Utilize Triple Well Technology……30

Chapter 3
The Description and Analysis of the Proposed Circuit
3.1 Selectable Multi-Output DC-DC Converters……34
3.1.1 Conventional Structure……………………………35
3.1.2 Proposed Structure…………………………………36
3.2 Improved Charge Pump………………………………38
3.2.1 Shoot-Though Current Loss………………………38
3.2.2 Proposed Charge Pump with Loss Reduction Technique……41
3.3 Negative Charge Pumps……………………………43
3.3.1 Negative Charge Pump Utilize NMOS transistors…43
3.3.2 Cross-Coupled Negative Charge Pump………………45
3.3.3 Cross-Coupled Negative Charge Pump with Bulk Biasing…46
3.3.4 Cross-coupled Negative Charge Pump with Asymmetric NMOS……………………………………………………47
3.3.5 Reversion Loss…………………………………………49
3.3.6 Reversion Loss Reduction Technique………………50
3.3.7 Multi-Stage Negative Charge Pump…………………51
3.4 Negative to Positive Charge Pump………………52
3.4.1 Proposed Negative to Positive Charge Pump……53
Chapter 4
Circuits Implementation and Simulation Results
4.1 Output Stages and Control Circuits……………55
4.1.1 Output Stages………………………………………55
4.1.2 Control Circuits……………………………………61
4.2 Simulation Results…………………………………63
4.2.1 Improved Cross-Coupled Charge Pump……………63
4.2.2 Cross-Coupled Negative Charge Pump……………65
4.2.3 Load Regulation……………………………………68
4.2.4 Selectable Multi-Output DC-DC Converter……70
4.3 Layout of the Work…………………………………71

Chapter 5
Conclusions and Future Work
5.1 Conclusions…………………………………………73
5.2 Future Work…………………………………………74
[1] F. Goodenough, “Low Dropout Linear Regulators,” Electronic Design, pp. 65-77, May 13, 1996.

[2] Robert W. Erickson and Dragan Maksimovic, Fundamentals of Power Electronics, 2nd ed., Norwell, MA: Kluwer Academic Publishers, 2001

[3] K. Sawada, Y. Sugawara, and S. Masui, “An on-chip high-voltage generator circuit for EEPROM’s with a power supply voltage below 2V,” in Symp. VLSI Circuits Dig. Tech. Papers, 1995, pp. 75-76.

[4] T. Kawahara, T. Kobayashi, Y. Jyouno, S. Saeki, N. Miyamoto, T. Adachi, M. Kato, A. Sato, J. Yugami, H. Kume, and K. Kimura, “Bitline clamped sensing multiplex and accurate high voltage generator forquarter-micron flash memories,” IEEE J. Solid-State Circuits, vol. 31, pp. 1590–1600, Nov. 1996

[5] Y. Nakagome, et al., ”An experimental 1.5-V 64 Mb DRAM,” IEEE J. Solid-State Circuits, vol. 26, pp. 465-472, April 1991.

[6] M. M. Ahmadi and G. Jullien, “A full CMOS voltage regulating circuit for bioimplantable applications,” in Midwest Symp. Circuits Syst., 2005, vol. 2, pp. 988-991.

[7] Dickson, J. “On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique.” IEEE Journal of Solid-State Circuits, Vol. 11, No 6, pp. 374-378, June 1976.

[8] T. Tanzawa and T. Tanaka, “A dynamic analysis of the Dickson charge pump circuit,” IEEE J. Solid-State Circuits, vol. 32, pp. 1231-1240, Aug. 1997.

[9] A. Cabrini, L. Gobbi, and G. Torelli, “Theoretical and experimental analysis of Dickson charge pump output resistance,” in Proc. IEEE Int. Symp. Circuits Syst., 2006, pp. 2749-2752.

[10] Jongshin Shin, et al., “A new charge pump without degradation in threshold voltage due to body effect [memory applications],” IEEE J. Solid-State Circuits, vol. 35, pp. 1227-1230, Aug. 2000.

[11] A. Umezawa, et al., “A 5-V-only operation 0.6-�慆 flash EEPROM with row decoder scheme in triple-well structure,” IEEE J. Solid-State Circuits, vol. 27, pp. 1540-1545, Nov. 1992.

[12] L. Mensi, et al., “A new integrated charge pump architecture using dynamic biasing of pass transistors,” in Proc. European Solid-State Circuits Conf., 2005, pp. 85-88.

[13] C. Lauterbach, W. Weber, and D. Romer, “Charge sharing concept and new clocking scheme for power efficiency and electromagnetic emission improvement of boosted charge pumps,” IEEE J. Solid-State Circuits, vol. 35, pp. 719-723, May 2000.

[14] Lin, H., N. Chen, and J. Lu. “Design of modified four-phase CMOS charge pumps for low-voltage flash memories.” Journal of Circuits, System, and Computers, Vol. 11, No. 4, pp.393-403,2002.

[15] Pan, et al. “Four phase charge pump operable without phase overlap with improved efficiency.” U.S. patent 7,030,683.

[16] Wu, J. T. and L. K. Chang. “MOS charge pumps for low-voltage operation.” IEEE Journal of Solid-State Circuits, Vol. 33, No. 4, April 1998

[17] Tsang, B. and E. Ng. “Switched capacitor DC-DC converters: Topologies and applications.” www.ocf.berkeley.edu/~eng/classes/EE290cPresentation.ppt.

[18] Wu, J. T. and Chang, K. L. “Low supply voltage CMOS charge pumps,” www.ics.ee.nctu.edu.tw/~jtwu/publications/pdf/97vlsi-cp.pdf.

[19] M. M. Ahmadi and G. Jullien, “A new CMOS charge pump for low voltage applications,” in IEEE Int. Symp. Circuits Syst., 2005, vol. 5, pp. 4261-4264.

[20] Lon-Kou Chang and Chih-Huei Hu, “High efficiency MOS charge pumps based on exponential-gain structure with pumping gain increase circuits,” IEEE Tran. Power Electronics, vol. 21, pp. 826-831, May 2006.

[21] Ming-Dou Ker, Shih-Lun Chen, and Chia-Shen Tsai, “Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS processes,” IEEE J. Solid-State Circuits, vol. 41, pp. 1100-1107, May 2006.

[22] Khoman Phang and D. A. Johns, “A 1V 1mW CMOS Front-End with on-chip Dynamic Gate Biasing for a 75Mb/s Optical Receiver,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 218-219, Feb. 2001.

[23] Y. Moisiadis, I. Bouras, and A. Arapoyanni, “A CMOS charge pump for low voltage operation,” Proc. IEEE Int. Symp. Circuits Syst., 2000, vol. 5, pp. 577-580.

[24] Hoi Lee and P. K. T. Mok, “Switching noise and shoot-through current reduction techniques for switched-capacitor voltage doubler,” IEEE J. Solid-State Circuits, vol. 40, pp. 1136-1146, May 2005.

[25] TianRui Ying, Wing-Hung Ki, and Mansun Chan, “Area-efficient CMOS charge pumps for LCD drivers,” IEEE J. Solid-State Circuits, vol. 38, pp. 1721-1725, Oct. 2003.

[26] Kyeong-Sik Min, et al., “CMOS charge pumps using cross-coupled charge transfer switches with improved voltage pumping gain and low gate-oxide stress for low-voltage memory circuits,” IEEE Int. Symp. Circuits Syst., 2002, vol. 5, pp. V-545 - V-548.

[27] Lin, H., H. K. Chang, and C. S. Wong. “Novel high positive and negative pumping circuits for low supply voltage.” IEEE International Symposium on Circuits and Systems, Vol. 1, pp. 238-241, May 20-June 2, 1999.

[28] Naso, et al. “Negative-voltage charge pump with feedback control.” U.S. Patent 5,168,174.

[29] Jinbo, T., et al. “A 5-V-only 16-Mb flash memory with sector erase mode.” IEEE Journal of Solid-State Circuits, Vol. 27, pp. 1547-1553, 1992.

[30] Atsumi, S., et al. “A 16-Mb Flash EEPROM with a new self-data-refresh sheme for a sector erase operation.” IEEE Journal of Solid-State Circuits, Vol. 29, pp. 461-469, 1994

[31] Y. E. Tsiatouhas, “A stress-relaxed negative voltage-level converter,” IEEE J. Transactions on Ckts. & Sys, vol 54, no. 3, March 2007

[32] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599–606, May 1999.

[33] T. Ying, W. H. Ki, and M. Chan, “Area-efficient CMOS charge pumps for LCD drivers,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1721–1725, Oct. 2003.

[34] W. H. Ki, F. Su and C. Y. Tsui, “Charge redistribution loss consideration in optimal charge pump design,” IEEE Int’l Symp. On Ckts. & Sys., Kobe, Japan, pp. 1895-1898, May 2005.

[35] F. Su, W. H. Ki, and C. Y. Tsui, “High efficiency cross-coupled doubler with no reversion loss,” IEEE Int’l Symp. On Ckts. & Sys., May 2006.

[36] Alan Hastings, “The Art of Analog Layout,” 2nd ed, Prentice Hall, 2001
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top