跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 16:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳培琮
論文名稱:應用室內剪力波速法評估礫石土液化潛能之研究
指導教授:林炳森林炳森引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:土壤液化剪力波速動三軸
相關次數:
  • 被引用被引用:6
  • 點閱點閱:468
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
礫石土層在本島之分佈範圍廣闊,如河谷、平原、台地與丘陵區,其中尤以位於中央山脈以西之山麓丘陵地、台地與各河川流域等地區是屬於政、經、文、教中心,亦是各項工程建設之重要位置。本島地震活動甚為頻繁,1999年9月21日,台灣發生百年來災害最嚴重之集集大地震,此次地震之地震規模(Mw)為7.3,造成廣泛且嚴重之災害,並在南投、霧峰眾多液化案例中發現到罕見之礫石土層液化現象。有關礫石土之液化案例及相關文獻較少,對其瞭解程度並不如一般細顆粒土壤,故必須進一步研究,以降低礫石土液化所造成之損失。
本研究選定霧峰鄉福田橋下高灘地為研究場址,進行現場取樣,一般礫石土最大粒徑(Dmax)常大於一般三軸室尺寸,故以等重量替代法模擬現場粒徑分佈曲線,進行室內三軸抗液化強度試驗與剪力波速之量測。探討不同礫石含量、不同相對密度與液化阻抗對剪力波速之影響,並將結果與Andrus & Stokoe(2000) 礫石部份之資料進行分析與黃群凱(2001)室內重模土抗液化強度結果進行比較,以建立適用於台灣本土之礫石土液化評估模式。
將室內試驗結果與施元瑋(2004)現場表面波譜法量測結果及Andrus & Stokoe 礫石部份之資料進行最小錯誤分類法分析初步得到修正後之抗液化強度CRR7.5之公式如下:
,並進行液化潛能評估,其安全係數小於1,表示現地確實存在液化之潛能,與現地發生液化事實相符,證明修正後之抗液化強度CRR7.5公式較適合台灣礫石土液化潛能評估。
目錄
摘要………………………………...…………….……………………..Ⅰ
誌謝……………………………………...……………………………...Ⅱ
目錄……………………………………...……….………………….….Ⅲ
表目錄………………………………...………….……………………..Ⅵ
圖目錄……………………………...…………….……………………..Ⅶ
照片目錄………………………...……………………….……………..Ⅸ
第一章 緒論..………………...……………………………………….…1
1.1研究背景與目的……...………….………………………………...1
1.2研究方法…………...………………………..…………………..…1
1.3論文內容.………..……………..………………….….………..3
第二章 文獻回顧……...……………………………………...…………5
2.1 液化定義與影響液化之因素…….………………………...…….5
2.1.1 液化現象與液化名詞之定義…….………………….………5
2.1.2 影響液化之因素………………….………………….………7
2.2 礫石土液化相關案例之研究………….…………………..……10
2.3 礫石土層液化潛能之研究…………….……………..…………13
2.3.1 剪力波速法………………………………………...……….13
2.3.2 剪力波速法之特點……………………...……...………..13
2.3.3 影響土壤剪力波速之因素…………………....……….14
2.3.4 剪力波速之試驗方式……………………...….……….16
2.4 最小錯誤分類法………………………………………..…...…..18
2.5 橡皮膜貫入效應………………………………………..…...…..19
2.6 液化評估方法之介紹…………………………….…….……….23
2.6.1 Seed簡易分析法…………………………….….….………..24
2.6.2 反覆三軸試驗之液化潛能評估法………………..………..30
2.6.3 剪力波速液化評估法…………..……………………..……32
第三章 試驗方法與內容……………………………..………...….36
3.1 研究場址之地質狀況……………………………...…………....36
3.2 試驗規劃…………………………………………...…………....40
3.3試體材料性質………………….………………………………...40
3.3.1 模擬現地粒徑分佈曲線………………….………………...41
3.3.2 試體之最大乾密度(γd max )與最小乾密度(γd min)………..42
3.4剪力波速試驗儀器與設備………………….………….…..……44
3.5剪力波速量測試體之製作與試驗步驟………………...…….….51
3.5.1 試體製作與組裝……………………………………………51
3.5.2 試驗步驟………………………………………….………...54
3.5.3 剪力波速量測原理……………………………….………...54
第四章 試驗結果與討論…………………………………...………...57
4.1橡皮膜貫入效應之修正…..……………………………………...60
4.1.1橡皮膜貫入效應之降低與礫石含量(GC)、相對密度(Dr)之關係………………………………...………………………………....60
4.1.2橡皮膜貫入效應之降低與反覆應力CSRN=15之關係……...67
4.2剪力波速與反覆加載前後之關係……………….………….…..67
4.2.1剪力波速與礫石含量(GC)之關係………………………....68
4.2.2剪力波速與相對密度(Dr)之關係……………..…………....69
4.2.3剪力波速與反覆應力比CSR之關係……………………....69
4.2.4純礫石與圍壓之關係……………………………………..…70
4.3 Andrus & Stokoe (2000)液化曲線之探討…………………...…..71
4.3.1最小錯誤分類法與液化曲線之關係…………………….….72
4.3.2修正後液化曲線之討論…….…………………..……….….73
4.4 綜合討論………………………………………...………...…….74
第五章 結論與建議…………………………………...……...………76
5.1 結論………………………………………………...…..………..76
5.2 建議……………………………………………………….……..77
參考文獻………………………………………………….…………….78
附錄………………………………………………………………….….85
參考文獻
1. 中鼎工程股份有限公司(1985),“第二高速公路南投高架段鑽探報告”,交通部台灣區國道新建工程局。
2. 中興工程顧問社(1993),“土壤液化潛能評估方法研究期末報告第一冊(分析評估報告) ”,交通部高速鐵路工程籌備處研究報告。
3. 江澎(1995),“飽和砂土動態強度之研究-台灣地區砂性土壤”,國立交通大學土木工程研究所碩士論文,新竹。
4. 李煜舲(1988),“飽和砂土液化特性與孔隙水壓預估之研究”,國立交通大學土木工程研究所碩士論文,新竹。
5. 杜明璁(2000),“等向受飽和土壤之三軸應力波試驗”,私立淡江大學土木工程學系碩士論文,台北。
6. 吳偉特(1979),“台灣地區砂性土壤液化潛能之初步研究”,土木水利,第六卷,第二期,第39-70頁。
7. 吳偉特和楊藤芳(1987),“細料含量在不同程度影響因素中對台灣地區沈積砂土液化特性之研究”,土木水利,第十四卷,第三期, PP59-74。
8. 吳重君(1992),“高雄砂質土層之動態特性分析及液化評估之研究 ”,國立成功大學土木工程研究所,碩士論文。
9. 李咸亨、陳慧慈(1997),“液化與地震災害”,國家地震工程研究中心簡訊,第21期,第1-5頁。
10. 侯勝元(1993),“土壤粒徑分佈及細料稠度對砂土液化強度之影響”,國立成功大學土木工程研究所,碩士論文。
11. 林國忠(1996),“反覆荷重作用下砂性土壤之變形行為研究”,國立成功大學土木工程研究所碩士論文,台南。
12. 林炳森、謝基政、黃群凱、李仁森(2000),“921集集大地震南投市液化初步調查研究”,行政院國家科學委員會。
13. 亞新工程顧問股份有限公司(2000),“南投、霧峰地區土壤液化調查研究”,行政院國家科學委員會。
14. 黃俊鴻、陳正興(1998),土壤液化評估規範之回顧與前瞻,地工技術第70期,第23-44頁。
15. 黃俊鴻、楊志文(2001),“以集集地震案例資料建立土壤臨界液化強度曲線”,中國土木水利工程學刊,第13卷,第2期,第339-352頁。
16. 黃群凱(2001),“礫石土液化潛能之研究”,國立中興大學土木工程研究所碩士論文,台中。
17. 鄭文隆、吳偉康(1985),“土壤液化之災害型態與現地研判”, 地工技術,第9期,第91-103頁。
18. 鄭向高(2002),“貝克錘貫入試驗應用於礫石土液化潛能分析之研究”,國立中興大學土木工程研究所碩士論文,台中。
19. 鄭福仁(1995),“礫石含量及礫石粒徑對砂土液化抗阻之影響”,國立成功大學土木工程研究所,台南。
20. 鄧屬予(1996)“台灣礫石層的地質背景”,地工技術,第55期,第5-24頁。
21. 賴聖耀(1991)“以最小錯誤分類法統計震災地區土壤液化強度與SPT調查結果之關係”,土木水利,第18卷,第1期,第29-44頁。
22. 羅弘樹(1997),“台中地區卵礫石層動態性質之研究”,國立中興大學土木工程研究所碩士論文,台中。
23. Alex S.Y. and R.G. (1994). “Becker and Standard Penetration Tests (BPT-SPT) Correlations with Consideration of Casing Friction.” Canadian Geotechnical Journal,31, 343-356.
24. Andrus, R.D., and Stokoe, K.H. (2000). “ Liquefaction Resistance of Soil from Shear Wave Velocity.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.126, No.11, pp. 1015-1025.
25. Banerjee, N.G., Seed, H.B., and Chan, C.K. (1979). “Cyclic behavior of dense coarse-grained materials in relation to the seismic stability of dams. ”Rep. No. UCB/E.ERC-79U3, Earthquake Engrg. Res. Ctr., Coil. of Engrg., Univ. of California, Berkeley, Calif.
26. Castro, G. (1975). “Liquefaction and Cyclic Mobility of Sands.” Journal of the Geotechnical Engineering Division, ASCE, Vol.101, No.GT6, pp. 551-569.
27. Casagrande, A. (1976). “Liquefaction and Cyclic Deformation of Sand — A Critical Review.” Fifth Panamerican Conference on Soil Mechanics and Foundation Engineering Buenos Aries, pp. 105-134.
28. DeAlba. P., Baldwin, K., Janoo, V., Roe, G., and Celikkol, B. (1984). “Elastic Wave Velocities and Liquefaction Potential.” Geotechnical Testing Journal, Vol.7, No.2, pp. 77-87.
29. Finn, M. N., and Veneziano, D. (1982). “Assessment of Liquefaction Potential and Post-Liquefaction Behavior of Earth Structure: Development 1981-1991.” Proceedings, Second International Conference on Recent Advance in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, pp. 1833-1850.
30. Fragaszy, R. J., Su, J., Siddiqi. F. H., and Ho, C. L. (1992). “Modeling strength of sandy gravel.” Journal of Geotechnical Engineering, ASCE, Vol.118, No.6, pp. 920-935.
31. Harder, L.F., Seed, H.B., (1986), “Determination of Penetration Resistance for Coarse-grained Soils Using the Becker Hammer Drill,” Report No. UBC/EERC-86/06, Earthquake Engineering Research Center, College of Engineering, Univ. of California, Berkeley.
32. Hatanaka, M., Suzuki, T. and Endo, M (1988) “Cyclic undrained shear properties of high quality undisturbed Tokyo gravel” Soils and Foundations,Vol.28, No.4,pp. 57-68
33. Hatanaka, M.,(1997), “Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-ken Nanbu earthquake ”Soils and Foundations,Vol.37, No.3,pp. 107-115
34. Hatanaka, M. and Uchida, A., (1999), “Estimating K0-Value of In-Situ Gravelly Soil” Soil and Foundations, Vol.39, No.5, pp. 93-101.
35. Ishihara, K. (1993), “Liquefaction and Flow Failure During Earthquakes”, Geotechnique, Vol.43, No.3, pp.351-415.
36. Jamiolkowski, M., Ladd, C.C., Germine, J.T., and Lancellotta, R. (1985). “New Development in Field and Laboratory Testing of Soils.” Proceedings, 9th International Conference on Soil Mechanics, San Francisco, Vol.1, pp. 57-153.
37. Kokusho, T., (2000), “Correation of Pore-Pressure B-Value with P-Wave Velocity and Poission’s Ratio for Imprefectly Saturated Sand or Gravel” Soil and Foundations, Vol.40, No.4, pp. 95-102.
38. Lee K. L., and Fitton J. A. (1969), “Factors Affecting the Cyclic Loading Strength of Soil, ” Vibration Effects of Earthquake on Soils the Foundations, ASTM STP450, American Society for Testing and Materials.12.
39. Liang, R.W., Bai, X.H., and Wang, J.C. (2000). “Effect of Clay Particle Content on Liquefaction of Soil .” Proceedings,12th World Conference on Earthquake Engineering , Auckland, New Zealand.
40. Mark, D.E., Seed, H.B., Seed, R.B. (1992), “Membrane Compliance and Liquefaction of Sluiced Gravel Specimens, ”Journal of Geotechncal Engineering, ASCE, Vol.118, No.6, pp. 856-872.
41. Mark, D.E., and Harder. L. F. (1993). “Evaluating liquefaction potential of gravelly soil in dams. ” Proc., Geotechnical practice in darn rehabilitation conf., ASCE, New York, N.Y., 467-481.
42. Mark, D.E., and Zhou, S. P. (1995), “Liquefaction Behavior of Sand-Gravel Composites”, Journal of Geotechnical Engineering. Vol.120(3), pp. 581-596.
43. Marcuson, W.F., Ill, and Townsend, F.C. (1978), “Effects of Specimen Reconstitution on Cyclic Triaxial Results,” WESmiscellaneous paper S-76-5, U.S. Army Engineer Waterways Experiment Station, Corps of Engineers, Vicksburg, Miss 13.
44. Mulilis, J. P., Townsend, E. C., and Horz, R. C. (1978), “Dynamic eotechnical Testing,” ASTM STP654, American Society for Testing and Material. pp. 356-383,16.
45. Mark D. Evans, and Shengping Z., (1995) “Liquefaction Behavior of Sand-Gravel Composites,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.120, No.3, pp. 581-596.
46. Nicholson P.G., Seed, R.B., and Anwar, H. A. (1993), “Elimination of Membrane Compliance in Undrained Triaxial Testing, 1. Measurement and Evaluation,” Canadian Geotechnical Journal, Vol.30, No.5, pp. 727-738,17.
47. Robertson, P.K., Woeller, D.J., and Finn, W.D.L. (1992). “Seismic cone Penetration Test for Evaluation Liquefaction Potential under Cyclic Loading.” Canadian Geotechnical Journal, Ottawa, Canada, Vol.29, No.4, pp. 686-695.
48. Ramana, K.V. and Raju V.S. (1981). “Conatsnt-Volume Triaxial Tests to Study the Effect of Membrane” Geotechnical Testing Journal , Vol. 4, No.3,pp.117-122
49. Seed, H.B., and Idriss, I.M. (1971). “Simplified Procedure for Evaluating Soil Liquefaction Potential.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No.SM9, pp. 1249-1273.
50. Seed, H.B., and Lee, K.L. (1976). “Liquefaction of Saturated Sands during Cyclic Loading.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.92, No. SM6, pp. 105-134.
51. Seed, R. B., Anwar. H. A., and Nicholson, P. G. (1989). “Elimination of membrane compliance effects in undrained testing of gravelly soils,”Proc., 12th Int. Conf. on Soil Mech. and Found. Engrg.. A. A. Balkema, Rotterdam, The Netherlands, 111-114.
52. Seed H. B., ldriss L. M., and Arango, 1. (1992), “Evaluation of Liquefaction Potential Using Field Performance Data, ” Journal of Geotechnical Engineering, ASCE, Vol.118, No.6, pp. 856-872.374.
53. Seed, R. B. and Anwar, H. A., (1993), “Elimination of Membrane Compliance in Undrained Triaxial Testing, 1. Measurement and Evaluation,” Canadian Geotechnical Journal, Vol. 30, No. 5, pp. 727-738.
54. Singh, S. (1996). “Liquefaction Characteristics of Silts.”Geotechnical and Geological Engineering, Vol.14, No.1, pp. 1-19.
55. Sy A., (1997) “Twentieth Canadian Geotechnical Colloquium: Recent developments in the Becker penetration test: 1986 -1996,” Canadian Geotechnical Journal, 34: 952-973.
56. Sy A. and Lum K.Y., (1997) “Correlations of Mud-injection Becker and Standard Penetration Tests,” Canadian Geotechnical Journal, 34: 139-144.
57. Tamura, S., and Tokimatsu, K., (2002), “Effects of Air Bubbles on B-Value and P-Wave Velocity of A Partly Saturated Sand” Soil and Foundations, Vol.42, No.1, pp. 121-129.
58. Wong R. T. Seed, H. B. and Chan C. K. (1975), “Cyclic Loading Liquefaction of Gravelly Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.101, No. GT6, pp. 571-583.
59. Xia, H., and Hu, T. (1991). “Effects of Saturation and Back Pressure on Sand Liquefaction.” Journal of Geotechnical Engineering, ASCE, Vol.117, NI.
60. Yoshimi, Y., Kuwabara, F., and Tokimatsu, K. (1975). “One-Dimensional Volume Change Characteristics of Sands Under Very Low Confining Stress.” Soils and Foundations, Vol.15, No.3, pp. 51-60.
61. Youd, T. L., Idriss, I. M., Andrus, R. D., Harder, L. F., Robertson, P. K., Seed, R. B., and Stokoe, K. H.(2001). “Liquefaction Resistance of Soil: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils” Journal of the. Geotechnical and Geoenvironmental Engineering, ASCE, Vol.127, No.10, pp. 817-833.
62. Yegian M. K., Ghahraman V. G., and Harutiunyan R. N. (1994) “Liquefaction and Embankment Failure Case History, 1988 Armenia Earthquake” Journal of the Geotechnical and Geoenvironmental Engineering, ASCE, Vol.120, No.3, pp. 581-596.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top