跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許民育
研究生(外文):Min-Yu Hsu
論文名稱:水稻OsMADS14基因調節早開花之分子機制及建立誘導性轉殖基因表現平台的探討
論文名稱(外文):Studies on the molecular mechanisms involved in OsMADS14-regulated early flowering and evaluation on the establishment of an inducible transgenic platform in rice
指導教授:顏宏真顏宏真引用關係陳良築
指導教授(外文):Hung-Chen Emilie YenLiang-Jwu Chen
口試委員:陳鵬文
口試委員(外文):Peng-Wen Chen
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:71
中文關鍵詞:早開花突變體轉殖
外文關鍵詞:OsMADS14Agrobacterium-mediated transformationBar selection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
已知水稻T-DNA插入突變株M52048之早開花性狀是由於OsMADS14基因被活化造成。水稻OsMADS14基因與阿拉伯芥中參與開花調節之AP1為同源基因。本實驗室過去以ubiquitin啟動子大量表現OsMADS14,確實造成轉殖株極早開花與矮化,初步研究顯示OsMADS14持續表現,會促進開花調節路徑上游之開花調控基因Hd3a及RFT1提早表現且表現量持續增加。本研究旨在進一步了解大量表現OsMADS14會促進水稻早開花之可能分子機制;除了確認Hd3a與RFT1基因受到促進之外,想了解是否還有其它可能受OsMADS14影響而導致早開花之調節基因。於是搜尋受到阿拉伯芥AP1影響而導致早開花之水稻同源基因,包括開花抑制基因:RCN1、OsTEM1-Like及OsTOE1-Like;Cytokinins (CK) 生合成基因:OsLOG、OsLOG Like-2、OsLOG Like -3、OsCKX4、OsCKX5;及GA生合成基因:OsEUI1、OsGA13ox1等,進行分析。結果顯示開花基因Hd3a和RFT1在Ubi:OsMADS14轉殖株中皆提早表現;調控CK生合成之OsLOG基因受到抑制,OsCKX5基因受到活化,可能因而降低葉腋分生組織活性,促進開花。然而,開花抑制基因RCN1不僅沒有被抑制,反而表現量增加,這其中的調控機制,值得進一步探討。另外,GA生合成相關之OsEUI1和OsGA13ox1基因表現量增加,推測可能為導致水稻植株矮化重要原因之一。
本研究同時探討水稻中可能為對應於AtTFL1、AtTOE1、及AtTEM1之開花抑制相關基因:LOC_Os11g05470 (RCN1),LOC_Os05g03040 (OsTOE1-Like),LOC_Os01g49830 (OsTEM1-Like) 等之功能。自台灣水稻T-DNA插入突變庫中,獲得可能活化RCN1之T-DNA插入突變株M78020及可能活化OsTEM1-Like之突變株M89461,進行T-DNA插入位置確認及基因型與外表型之相關性分析。結果顯示T-DNA插入位正確,突變株M78020之野生型回復株與同質基因型植株,外表型及開花期沒有明顯差異,然而M89461同質基因型植株比異質基因型植株,呈現晚開花情形。突變株之目標OsTEM1-Like基因之表現仍需進一步分析確認。
本研究亦嘗試利用酒精誘導系統表達外源性基因,透過AlcR調節因子,調節目標基因表現。本酒精誘導系統,包含一個由35S 啟動子轉錄、對酒精敏感的AlcR轉錄因子及一個含有能受AlcR轉錄因子調節的啟動子AlcA結合下游目標基因的轉錄單位。這系統以抗殺草劑基因Bar為篩選標誌,與本研究室過去常使用Hyg篩選標誌之轉殖系統不同,所以需要建立篩選平台。篩選過程顯示,雖然有獲得再生植株,然而分析結果顯示所有植株皆非轉殖株,未來可調整抗性基因為Hyg,再嘗試建立以酒精誘導系統,表達外源性基因之水稻轉殖平台。

The early flowering phenotype of a rice T-DNA insertion mutant M52048 had been demonstrated due to the activation of OsMADS14, an Arabidopsis AP1 homologous gene involved in flowering regulation. Overexpressing OsMADS14 with ubiquitin promoter construct Ubi:OsMADS14 in TNG67 revealed early flowering as observed in M52048. In addition, the early expression of two floregin genes Hd3a and RFT1 were observed and enhanced in Ubi:OsMADS14 transgenic rice. However, how the activation and overexpression of OsMADS14 in rice could result in early flowering as AP1 did in the Arabidopsis have not been characterized. The present study aims to understand the molecular mechanisms of early flowering that regulated by over-expressing OsMADS14. The rice homologous to Arabidopsis AP1-regulated genes that lead to early flowering and dwarf, such as floral repressors, RCN 1 (homologous to TFL1), OsTEM1-like (TEM1), OsTOE1-like (TOE1); cytokinin biosynthesis genes, such as OsLOG, OsLOG1-like, OsLOG2-like, OsLOG3-like, OsCKX4, OsCKX5; and GA biosynthesis related genes, such as OsEUI1 and OsGA13ox1, were identified and investigated. Results showed Hd3a and RFT1 expressed much earlier in Ubi:OsMADS14 transgenic rice, and OsLOG and OsCKX5 response similarly to their homologous genes LOG1 and CKX3 in Arabidopsis, which may reduce axillary meristem growth and promote flowering. Surprisingly, the flowering suppressor gene RCN1 was enhanced, response differently from that in Arabidopsis. Therefore, the role of RCN1 in rice required further investigation. Regarding to the GA biosynthesis-related genes, the expression level of OsEUI1and OsGA13ox1 were enhaced that could possibly explain the dwarf phenotype of Ubi:OsMADS14 transgenic rice.
The function of rice genes LOC_Os11g05470 (RCN1); LOC_Os05g03040 (OsTOE1-Like); LOC_Os01g49830 (OsTEM1-Like) homologous to Arabidopsis flowering suppressor genes AtTFL1, AtTOE1 and AtTEM1 were investigated. Two T-DNA insertion mutants, M78020 that may activate RCN1 and M89461 that may activate OsTEM1-like gene, were obtained from TRIM database for characterization. The insertion events of these two mutants were confirmed, and the mutant M89461 presente a late flowering phenotype, however mutant M78020 display no phenotype and no different in heading date to that of WT control. The links between the target genes expression and heading date phenotypes are under investigation.
Establishing an alcohol inducible transgenic platform is another project of this study. This alcohol inducible system contains an alcohol-sensitive transcription factor AlcR driven by 35S promoter, and a second transcription unit contains AlcA promoter-driven target gene that can be regulated by alcohol-bound AlcR transcription factor. This alcohol inducible system using herbicide resistant bar gene as selection marker which is different from the hygromycin selection system we used routinely. Therefore, the optimization of selection condition was performed. Although several regenerated rice plant were obtained, none of them contain the transgene. In order to set up the alcohol inducible transgenic platform, replacing herbicide with hygromycin selection is suggested.

摘要 i
Abstract ii
目錄 iv
表目次 vi
圖目次 vi
附表 vii
附圖 vii
附錄 vii
縮寫字對照表 viii
前言 1
前人研究 2
一、水稻基因功能之研究 2
二、參與花器形成之MADS-box基因研究 2
三、OsMADS14基因功能分析 4
四、開花時間之調控 4
五、Ubi:OsMADS14導致矮株與植物賀爾蒙吉貝素 (Gibberellin, GAs) 之生合成及 代謝路徑 6
六、酒精誘導外源基因表現平台之背景及應用 7
七、利用酒精誘導表現系統調節開花 8
八、利用酒精誘導表現系統調節植株矮化 9
材料與方法 10
一、儀器及設備、藥品、試驗材料 10
二、水稻轉殖表現載體之構築 10
三、水稻之轉殖方法 12
四、水稻轉殖基因分析 13
結果 17
一、水稻OsMADS14基因功能之探討 17
二、水稻RCN1、TEM1及TOE1等抑制開花相關基因之功能探討 20
三、建立誘導性轉殖基因表現平台的探討 22
討論 26
一、大量表現OsMADS14提早水稻開花抽穗,對花器之發育影響不大 26
二、開花激素Hd3a 和RFT1的表現可能受到MADS-box蛋白複合物調控 26
三、大量表現OsMADS14對調節開花相關之Cytokinins生合成基因表現之影響 27
四、大量表現OsMADS14 對GA代謝基因的影響 27
五、大量表現OsMADS14對開花抑制相關基因的影響 28
六、酒精誘導表現轉殖載體之構築及轉殖再生 28
七、農桿菌轉殖共培養後續處理 29
結論 31
參考文獻 32
表 40
圖 47
附表 61
附圖 64
附錄 70


李咨胤. (2011). 水稻T-DNA插入突變體M52048分析及活化的三個基因OsMADS14, OsMADS34, OsCP7之功能研究. 國立中興大學分子生物研究所碩士論文.
周玲艷、姜大剛、吳 豪、莊楚雄. (2003). 潮黴素和 PPT 對水稻癒傷組織篩選效果的比較. 仲愷農業技術學院學報. 16(2):10-15.
陳潁芩. (2015).水稻OsMADS14與OsCP7基因功能探討. 國立中興大學分子生物研究所碩士論文.
費雯綺、王喻其、陳富翔、林曉民、李貽華. (2010). 植物保護手冊. 行政院農業委員會農業藥物試驗所編印 臺中,臺灣。
羅舜芳. (2008). 利用T-DNA插入性突變探討水稻中GA 2-oxidase, MADS14, MADS34和Flavonoid 3’-hydroxylase之功能. 國立中興大學分子生物研究所博士論文, 166.
Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056.
Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Ribas de Pouplana, L., Martinez-Castilla, L., and Yanofsky, M.F. (2000). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97, 5328-5333.
An, G., Costa, M.A., and Ha, S.B. (1990). Nopaline synthase promoter is wound inducible and auxin inducible. The Plant Cell 2, 225-233.
Arora, R., Agarwal, P., Ray, S., Singh, A.K., Singh, V.P., Tyagi, A.K., and Kapoor, S. (2007). MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8, 242.
Bai, X., Wang, Q., and Chu, C. (2008). Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Research 17, 1035-1043.
Bjorklund, S., Antti, H., Uddestrand, I., Moritz, T., and Sundberg, B. (2007). Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. The Plant Journal 52, 499-511.
Caddick, M.X., Greenland, A.J., Jepson, I., Krause, K.P., Qu, N., Riddell, K.V., Salter, M.G., Schuch, W., Sonnewald, U., and Tomsett, A.B. (1998). An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol 16, 177-180.
Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y.H., An, G., and Jang, S.K. (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol Biol 40, 419-429.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.
Cui, R., Han, J., Zhao, S., Su, K., Wu, F., Du, X., Xu, Q., Chong, K., Theissen, G., and Meng, Z. (2010). Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The Plant Journal 61, 767-781.
Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18, 926-936.
Ferrandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725-734.
Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L., and Kater, M.M. (2004). Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135, 2207-2219.
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18, 4679-4688.
Frigerio, M., Alabadi, D., Perez-Gomez, J., Garcia-Carcel, L., Phillips, A.L., Hedden, P., and Blazquez, M.A. (2006). Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142, 553-563.
Gao, X., Liang, W., Yin, C., Ji, S., Wang, H., Su, X., Guo, C., Kong, H., Xue, H., and Zhang, D. (2010). The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153, 728-740.
Guo, S., Sun, B., Looi, L.S., Xu, Y., Gan, E.S., Huang, J., and Ito, T. (2015). Co-ordination of Flower Development Through Epigenetic Regulation in Two Model Species: Rice and Arabidopsis. Plant Cell Physiol 56, 830-842.
Han, Y., Zhang, C., Yang, H., and Jiao, Y. (2014). Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc Natl Acad Sci U S A 111, 6840-6845.
Henry, P.W., Thomas, E.H., Robin, R.B., and John, A.G. (1985). Comparisons of HOE-39866, SC-0224, Paraquat, and Glyphosate in No-Till Corn (Zea mays). Weed Science 33, 531-536.
Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6, 271-282.
Horsch, R.T., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., and Fraley, R.T. (1985). A simple and general method for transferring genes into plants. Science 227, 1229-1231.
Hsing, Y.I., Chern, C.G., Fan, M.J., Lu, P.C., Chen, K.T., Lo, S.F., Sun, P.K., Ho, S.L., Lee, K.W., Wang, Y.C., Huang, W.L., Ko, S.S., Chen, S., Chen, J.L., Chung, C.I., Lin, Y.C., Hour, A.L., Wang, Y.W., Chang, Y.C., Tsai, M.W., Lin, Y.S., Chen, Y.C., Yen, H.M., Li, C.P., Wey, C.K., Tseng, C.S., Lai, M.H., Huang, S.C., Chen, L.J., and Yu, S.M. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63, 351-364.
Humara, J.M., and Ordás, R.J. (1999). The toxicity of antibiotics and herbicides on in vitro adventitious shoot formation of Pinus pinea L. cotyledons. In Vitro Cellular & Developmental Biology - Plant 35, 339-343.
Iamtham, S., and Day, A. (2000). Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18, 1172-1176.
Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R., and Kay, S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302-306.
International Rice Genome Sequencing, P. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.
Jack, T. (2001). Plant development going MADS. Plant Mol Biol 46, 515-520.
Jeon, J.-S., Lee, S., Jung, K.-H., Yang, W.-S., Yi, G.-H., Oh, B.-G., and An, G. (2000). Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Molecular Breeding 6, 581-592.
Kater, M.M., Dreni, L., and Colombo, L. (2006). Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. Journal of Experimental Botany 57, 3433-3444.
Kaufmann, K., Wellmer, F., Muino, J.M., Ferrier, T., Wuest, S.E., Kumar, V., Serrano-Mislata, A., Madueno, F., Krajewski, P., Meyerowitz, E.M., Angenent, G.C., and Riechmann, J.L. (2010). Orchestration of floral initiation by APETALA1. Science 328, 85-89.
Kempin, S.A., Savidge, B., and Yanofsky, M.F. (1995). Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267, 522-525.
Kobayashi, K., Maekawa, M., Miyao, A., Hirochika, H., and Kyozuka, J. (2010). PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51, 47-57.
Kobayashi, K., Yasuno, N., Sato, Y., Yoda, M., Yamazaki, R., Kimizu, M., Yoshida, H., Nagamura, Y., and Kyozuka, J. (2012). Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. The Plant Cell 24, 1848-1859.
Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., and Yano, M. (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43, 1096-1105.
Komiya, R., Yokoi, S., and Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450.
Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., and Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development 135, 767-774.
Kyozuka, J., Kobayashi, T., Morita, M., and Shimamoto, K. (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41, 710-718.
Lee, J., and Lee, I. (2010). Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61, 2247-2254.
Lee, S., and An, G. (2007). Diversified mechanisms for regulating flowering time in a short-day plant rice. Journal of Plant Biology 50, 241-248.
Lee, T.T. (1984). Release of lateral buds from apical dominance by glyphosate in soybean and pea seedlings. Journal of Plant Growth Regulation 3, 227-235.
Liu, C., Thong, Z., and Yu, H. (2009). Coming into bloom: the specification of floral meristems. Development 136, 3379-3391.
Ma, H., and dePamphilis, C. (2000). The ABCs of Floral Evolution. Cell 101, 5-8.
MacMillan, J., Seaton, J.C., and Suter, P.J. (1962). Plant hormones—II. Tetrahedron 18, 349-355.
Magome, H., Nomura, T., Hanada, A., Takeda-Kamiya, N., Ohnishi, T., Shinma, Y., Katsumata, T., Kawaide, H., Kamiya, Y., and Yamaguchi, S. (2013). CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci U S A 110, 1947-1952.
Mathias, R.J., and Boyd, L.A. (1986). Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L em. thell). Plant Science 46, 217-223.
Nakagawa, M., Shimamoto, K., and Kyozuka, J. (2002). Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. The Plant Journal 29, 743-750.
Nauerby, B., Billing, K., and Wyndaele, R. (1997). Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Science 123, 169-177.
Okkels, E.T., and Pedersen, M.G. (1988). The toxicity to plant tissue and to Agrobactrtium tumefaciens of some antibiotics. Acta Hort 225, 199-207.
Olszewski, N., Sun, T.P., and Gubler, F. (2002). Gibberellin signaling: biosynthesis, catabolism, and response pathways. The Plant Cell 14 Suppl, S61-80.
Opabode, J.T. (2006). Agrobacterium-mediated transformation of plants: emetging factors that influence efficiency. Biotechnology Mol. Bio. Rev. 1.
Padidam, M. (2003). Chemically regulated gene expression in plants. Curr Opin Plant Biol 6, 169-177.
Peter, J.L., Kenneth, W.J., Juan, L.R., and Miguel, G.G. (1984). The action of 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry 23, 1-6.
Putterill, J., Laurie, R., and Macknight, R. (2004). It''s time to flower: the genetic control of flowering time. Bioessays 26, 363-373.
Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857.
Rao, N.N., Prasad, K., Kumar, P.R., and Vijayraghavan, U. (2008). Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci U S A 105, 3646-3651.
Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biol Chem 378, 1079-1101.
Roslan, H.A., Salter, M.G., Wood, C.D., White, M.R., Croft, K.P., Robson, F., Coupland, G., Doonan, J., Laufs, P., Tomsett, A.B., and Caddick, M.X. (2001). Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. The Plant Journal 28, 225-235.
Rupp, H.M., Frank, M., Werner, T., Strnad, M., and Schmulling, T. (1999). Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. The Plant Journal 18, 557-563.
Sakamoto, T., Kobayashi, M., Itoh, H., Tagiri, A., Kayano, T., Tanaka, H., Iwahori, S., and Matsuoka, M. (2001). Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125, 1508-1516.
Salter, M.G., Paine, J.A., Riddell, K.V., Jepson, I., Greenland, A.J., Caddick, M.X., and Tomsett, A.B. (1998). Characterisation of the ethanol-induciblealcgene expression system for transgenic plants. The Plant Journal 16, 127-132.
Schmitz, J., Franzen, R., Ngyuen, T.H., Garcia-Maroto, F., Pozzi, C., Salamini, F., and Rohde, W. (2000). Cloning, mapping and expression analysis of barley MADS-box genes. Plant Mol Biol 42, 899-913.
Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. (1990). Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science 250, 931-936.
Seok, H.Y., Park, H.Y., Park, J.I., Lee, Y.M., Lee, S.Y., An, G., and Moon, Y.H. (2010). Rice ternary MADS protein complexes containing class B MADS heterodimer. Biochem Biophys Res Commun 401.
Shitsukawa, N., Ikari, C., Shimada, S., Kitagawa, S., Sakamoto, K., Saito, H., Ryuto, H., Fukunishi, N., Abe, T., Takumi, S., Nasuda, S., and Murai, K. (2007). The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst 82, 167-170.
Song, Y.l., and Luan, W.J. (2012). Molecular Regulatory Network of Flowering by Photoperiod and Temperature in Rice. Rice Science 19, 169-176.
Stowe, B.B., and Yamaki, T. (1959). Gibberellins: stimulants of plant growth. Science 129, 807-816.
Su, C.L., Chao, Y.T., Yen, S.H., Chen, C.Y., Chen, W.C., Chang, Y.C., and Shih, M.C. (2013). Orchidstra: an integrated orchid functional genomics database. Plant Cell Physiol 54, e11.
Sun, T.P. (2011). The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21, R338-345.
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43, 484-516.
Thomas, S.G., Phillips, A.L., and Hedden, P. (1999). Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96, 4698-4703.
Tsuji, H., Tamaki, S., Komiya, R., and Shimamoto, K. (2008). Florigen and the Photoperiodic Control of Flowering in Rice. Rice 1, 25-35.
Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T.Y., Hsing, Y.I., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693-698.
Ueguchi-Tanaka, M., Nakajima, M., Katoh, E., Ohmiya, H., Asano, K., Saji, S., Hongyu, X., Ashikari, M., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2007). Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. The Plant Cell 19, 2140-2155.
Vierstra, R.D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8, 135-142.
Wang, J.-D., Lo, S.-F., Li, Y.-S., Chen, P.-J., Lin, S.-Y., Ho, T.-Y., Lin, J.-H., and Chen, L.-J. (2013). Ectopic expression of OsMADS45 activates the upstream genes Hd3a and RFT1 at an early development stage causing early flowering in rice. Botanical Studies 54, 1-13.
Wang, L., Sun, S., Jin, J., Fu, D., Yang, X., Weng, X., Xu, C., Li, X., Xiao, J., and Zhang, Q. (2015). Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci U S A 112, 15504-15509.
Wendler, C., Barniske, M., and Wild, A. (1990). Effect of phosphinothricin (glufosinate) on photosynthesis and photorespiration of C3 and C4 plants. Photosynthesis Research 24, 55-61.
Willige, B.C., Isono, E., Richter, R., Zourelidou, M., and Schwechheimer, C. (2011). Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. The Plant Cell 23, 2184-2195.
Wirtz, E., and Clayton, C. (1995). Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science 268, 1179-1183.
Yamaguchi, N., Winter, C.M., Wu, M.F., Kanno, Y., Yamaguchi, A., Seo, M., and Wagner, D. (2014). Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344, 638-641.
Yamaguchi, S. (2006). Gibberellin Biosynthesis in Arabidopsis. Phytochemistry Reviews 5, 39-47.
Yang, J.S., Yu, T.A., Cheng, Y.H., and Yeh, S.D. (1996). Transgenic papaya plants from Agrobacterium-mediated transformation of petioles of in vitro propagated multishoots. Plant Cell Rep 15, 459-464.
Yang, Y., Fanning, L., and Jack, T. (2003). The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. The Plant Journal 33, 47-59.
Yanovsky, M.J., and Kay, S.A. (2002). Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308-312.
Zhou, H.L., He, S.J., Cao, Y.R., Chen, T., Du, B.X., Chu, C.C., Zhang, J.S., and Chen, S.Y. (2006). OsGLU1, a putative membrane-bound endo-1,4-beta-D-glucanase from rice, affects plant internode elongation. Plant Mol Biol 60, 137-151.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top