李咨胤. (2011). 水稻T-DNA插入突變體M52048分析及活化的三個基因OsMADS14, OsMADS34, OsCP7之功能研究. 國立中興大學分子生物研究所碩士論文.周玲艷、姜大剛、吳 豪、莊楚雄. (2003). 潮黴素和 PPT 對水稻癒傷組織篩選效果的比較. 仲愷農業技術學院學報. 16(2):10-15.
陳潁芩. (2015).水稻OsMADS14與OsCP7基因功能探討. 國立中興大學分子生物研究所碩士論文.費雯綺、王喻其、陳富翔、林曉民、李貽華. (2010). 植物保護手冊. 行政院農業委員會農業藥物試驗所編印 臺中,臺灣。
羅舜芳. (2008). 利用T-DNA插入性突變探討水稻中GA 2-oxidase, MADS14, MADS34和Flavonoid 3’-hydroxylase之功能. 國立中興大學分子生物研究所博士論文, 166.Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056.
Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Ribas de Pouplana, L., Martinez-Castilla, L., and Yanofsky, M.F. (2000). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97, 5328-5333.
An, G., Costa, M.A., and Ha, S.B. (1990). Nopaline synthase promoter is wound inducible and auxin inducible. The Plant Cell 2, 225-233.
Arora, R., Agarwal, P., Ray, S., Singh, A.K., Singh, V.P., Tyagi, A.K., and Kapoor, S. (2007). MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8, 242.
Bai, X., Wang, Q., and Chu, C. (2008). Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic Research 17, 1035-1043.
Bjorklund, S., Antti, H., Uddestrand, I., Moritz, T., and Sundberg, B. (2007). Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. The Plant Journal 52, 499-511.
Caddick, M.X., Greenland, A.J., Jepson, I., Krause, K.P., Qu, N., Riddell, K.V., Salter, M.G., Schuch, W., Sonnewald, U., and Tomsett, A.B. (1998). An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol 16, 177-180.
Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y.H., An, G., and Jang, S.K. (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol Biol 40, 419-429.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.
Cui, R., Han, J., Zhao, S., Su, K., Wu, F., Du, X., Xu, Q., Chong, K., Theissen, G., and Meng, Z. (2010). Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The Plant Journal 61, 767-781.
Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., and Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18, 926-936.
Ferrandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725-734.
Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L., and Kater, M.M. (2004). Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135, 2207-2219.
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18, 4679-4688.
Frigerio, M., Alabadi, D., Perez-Gomez, J., Garcia-Carcel, L., Phillips, A.L., Hedden, P., and Blazquez, M.A. (2006). Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142, 553-563.
Gao, X., Liang, W., Yin, C., Ji, S., Wang, H., Su, X., Guo, C., Kong, H., Xue, H., and Zhang, D. (2010). The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiol 153, 728-740.
Guo, S., Sun, B., Looi, L.S., Xu, Y., Gan, E.S., Huang, J., and Ito, T. (2015). Co-ordination of Flower Development Through Epigenetic Regulation in Two Model Species: Rice and Arabidopsis. Plant Cell Physiol 56, 830-842.
Han, Y., Zhang, C., Yang, H., and Jiao, Y. (2014). Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc Natl Acad Sci U S A 111, 6840-6845.
Henry, P.W., Thomas, E.H., Robin, R.B., and John, A.G. (1985). Comparisons of HOE-39866, SC-0224, Paraquat, and Glyphosate in No-Till Corn (Zea mays). Weed Science 33, 531-536.
Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6, 271-282.
Horsch, R.T., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., and Fraley, R.T. (1985). A simple and general method for transferring genes into plants. Science 227, 1229-1231.
Hsing, Y.I., Chern, C.G., Fan, M.J., Lu, P.C., Chen, K.T., Lo, S.F., Sun, P.K., Ho, S.L., Lee, K.W., Wang, Y.C., Huang, W.L., Ko, S.S., Chen, S., Chen, J.L., Chung, C.I., Lin, Y.C., Hour, A.L., Wang, Y.W., Chang, Y.C., Tsai, M.W., Lin, Y.S., Chen, Y.C., Yen, H.M., Li, C.P., Wey, C.K., Tseng, C.S., Lai, M.H., Huang, S.C., Chen, L.J., and Yu, S.M. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63, 351-364.
Humara, J.M., and Ordás, R.J. (1999). The toxicity of antibiotics and herbicides on in vitro adventitious shoot formation of Pinus pinea L. cotyledons. In Vitro Cellular & Developmental Biology - Plant 35, 339-343.
Iamtham, S., and Day, A. (2000). Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18, 1172-1176.
Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R., and Kay, S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302-306.
International Rice Genome Sequencing, P. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.
Jack, T. (2001). Plant development going MADS. Plant Mol Biol 46, 515-520.
Jeon, J.-S., Lee, S., Jung, K.-H., Yang, W.-S., Yi, G.-H., Oh, B.-G., and An, G. (2000). Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Molecular Breeding 6, 581-592.
Kater, M.M., Dreni, L., and Colombo, L. (2006). Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. Journal of Experimental Botany 57, 3433-3444.
Kaufmann, K., Wellmer, F., Muino, J.M., Ferrier, T., Wuest, S.E., Kumar, V., Serrano-Mislata, A., Madueno, F., Krajewski, P., Meyerowitz, E.M., Angenent, G.C., and Riechmann, J.L. (2010). Orchestration of floral initiation by APETALA1. Science 328, 85-89.
Kempin, S.A., Savidge, B., and Yanofsky, M.F. (1995). Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267, 522-525.
Kobayashi, K., Maekawa, M., Miyao, A., Hirochika, H., and Kyozuka, J. (2010). PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51, 47-57.
Kobayashi, K., Yasuno, N., Sato, Y., Yoda, M., Yamazaki, R., Kimizu, M., Yoshida, H., Nagamura, Y., and Kyozuka, J. (2012). Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. The Plant Cell 24, 1848-1859.
Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., and Yano, M. (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43, 1096-1105.
Komiya, R., Yokoi, S., and Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450.
Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., and Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development 135, 767-774.
Kyozuka, J., Kobayashi, T., Morita, M., and Shimamoto, K. (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41, 710-718.
Lee, J., and Lee, I. (2010). Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61, 2247-2254.
Lee, S., and An, G. (2007). Diversified mechanisms for regulating flowering time in a short-day plant rice. Journal of Plant Biology 50, 241-248.
Lee, T.T. (1984). Release of lateral buds from apical dominance by glyphosate in soybean and pea seedlings. Journal of Plant Growth Regulation 3, 227-235.
Liu, C., Thong, Z., and Yu, H. (2009). Coming into bloom: the specification of floral meristems. Development 136, 3379-3391.
Ma, H., and dePamphilis, C. (2000). The ABCs of Floral Evolution. Cell 101, 5-8.
MacMillan, J., Seaton, J.C., and Suter, P.J. (1962). Plant hormones—II. Tetrahedron 18, 349-355.
Magome, H., Nomura, T., Hanada, A., Takeda-Kamiya, N., Ohnishi, T., Shinma, Y., Katsumata, T., Kawaide, H., Kamiya, Y., and Yamaguchi, S. (2013). CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci U S A 110, 1947-1952.
Mathias, R.J., and Boyd, L.A. (1986). Cefotaxime stimulates callus growth, embryogenesis and regeneration in hexaploid bread wheat (Triticum aestivum L em. thell). Plant Science 46, 217-223.
Nakagawa, M., Shimamoto, K., and Kyozuka, J. (2002). Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. The Plant Journal 29, 743-750.
Nauerby, B., Billing, K., and Wyndaele, R. (1997). Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Science 123, 169-177.
Okkels, E.T., and Pedersen, M.G. (1988). The toxicity to plant tissue and to Agrobactrtium tumefaciens of some antibiotics. Acta Hort 225, 199-207.
Olszewski, N., Sun, T.P., and Gubler, F. (2002). Gibberellin signaling: biosynthesis, catabolism, and response pathways. The Plant Cell 14 Suppl, S61-80.
Opabode, J.T. (2006). Agrobacterium-mediated transformation of plants: emetging factors that influence efficiency. Biotechnology Mol. Bio. Rev. 1.
Padidam, M. (2003). Chemically regulated gene expression in plants. Curr Opin Plant Biol 6, 169-177.
Peter, J.L., Kenneth, W.J., Juan, L.R., and Miguel, G.G. (1984). The action of 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry 23, 1-6.
Putterill, J., Laurie, R., and Macknight, R. (2004). It''s time to flower: the genetic control of flowering time. Bioessays 26, 363-373.
Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857.
Rao, N.N., Prasad, K., Kumar, P.R., and Vijayraghavan, U. (2008). Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci U S A 105, 3646-3651.
Riechmann, J.L., and Meyerowitz, E.M. (1997). MADS domain proteins in plant development. Biol Chem 378, 1079-1101.
Roslan, H.A., Salter, M.G., Wood, C.D., White, M.R., Croft, K.P., Robson, F., Coupland, G., Doonan, J., Laufs, P., Tomsett, A.B., and Caddick, M.X. (2001). Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. The Plant Journal 28, 225-235.
Rupp, H.M., Frank, M., Werner, T., Strnad, M., and Schmulling, T. (1999). Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. The Plant Journal 18, 557-563.
Sakamoto, T., Kobayashi, M., Itoh, H., Tagiri, A., Kayano, T., Tanaka, H., Iwahori, S., and Matsuoka, M. (2001). Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125, 1508-1516.
Salter, M.G., Paine, J.A., Riddell, K.V., Jepson, I., Greenland, A.J., Caddick, M.X., and Tomsett, A.B. (1998). Characterisation of the ethanol-induciblealcgene expression system for transgenic plants. The Plant Journal 16, 127-132.
Schmitz, J., Franzen, R., Ngyuen, T.H., Garcia-Maroto, F., Pozzi, C., Salamini, F., and Rohde, W. (2000). Cloning, mapping and expression analysis of barley MADS-box genes. Plant Mol Biol 42, 899-913.
Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. (1990). Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science 250, 931-936.
Seok, H.Y., Park, H.Y., Park, J.I., Lee, Y.M., Lee, S.Y., An, G., and Moon, Y.H. (2010). Rice ternary MADS protein complexes containing class B MADS heterodimer. Biochem Biophys Res Commun 401.
Shitsukawa, N., Ikari, C., Shimada, S., Kitagawa, S., Sakamoto, K., Saito, H., Ryuto, H., Fukunishi, N., Abe, T., Takumi, S., Nasuda, S., and Murai, K. (2007). The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst 82, 167-170.
Song, Y.l., and Luan, W.J. (2012). Molecular Regulatory Network of Flowering by Photoperiod and Temperature in Rice. Rice Science 19, 169-176.
Stowe, B.B., and Yamaki, T. (1959). Gibberellins: stimulants of plant growth. Science 129, 807-816.
Su, C.L., Chao, Y.T., Yen, S.H., Chen, C.Y., Chen, W.C., Chang, Y.C., and Shih, M.C. (2013). Orchidstra: an integrated orchid functional genomics database. Plant Cell Physiol 54, e11.
Sun, T.P. (2011). The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21, R338-345.
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43, 484-516.
Thomas, S.G., Phillips, A.L., and Hedden, P. (1999). Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96, 4698-4703.
Tsuji, H., Tamaki, S., Komiya, R., and Shimamoto, K. (2008). Florigen and the Photoperiodic Control of Flowering in Rice. Rice 1, 25-35.
Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., Chow, T.Y., Hsing, Y.I., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693-698.
Ueguchi-Tanaka, M., Nakajima, M., Katoh, E., Ohmiya, H., Asano, K., Saji, S., Hongyu, X., Ashikari, M., Kitano, H., Yamaguchi, I., and Matsuoka, M. (2007). Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. The Plant Cell 19, 2140-2155.
Vierstra, R.D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8, 135-142.
Wang, J.-D., Lo, S.-F., Li, Y.-S., Chen, P.-J., Lin, S.-Y., Ho, T.-Y., Lin, J.-H., and Chen, L.-J. (2013). Ectopic expression of OsMADS45 activates the upstream genes Hd3a and RFT1 at an early development stage causing early flowering in rice. Botanical Studies 54, 1-13.
Wang, L., Sun, S., Jin, J., Fu, D., Yang, X., Weng, X., Xu, C., Li, X., Xiao, J., and Zhang, Q. (2015). Coordinated regulation of vegetative and reproductive branching in rice. Proc Natl Acad Sci U S A 112, 15504-15509.
Wendler, C., Barniske, M., and Wild, A. (1990). Effect of phosphinothricin (glufosinate) on photosynthesis and photorespiration of C3 and C4 plants. Photosynthesis Research 24, 55-61.
Willige, B.C., Isono, E., Richter, R., Zourelidou, M., and Schwechheimer, C. (2011). Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. The Plant Cell 23, 2184-2195.
Wirtz, E., and Clayton, C. (1995). Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science 268, 1179-1183.
Yamaguchi, N., Winter, C.M., Wu, M.F., Kanno, Y., Yamaguchi, A., Seo, M., and Wagner, D. (2014). Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344, 638-641.
Yamaguchi, S. (2006). Gibberellin Biosynthesis in Arabidopsis. Phytochemistry Reviews 5, 39-47.
Yang, J.S., Yu, T.A., Cheng, Y.H., and Yeh, S.D. (1996). Transgenic papaya plants from Agrobacterium-mediated transformation of petioles of in vitro propagated multishoots. Plant Cell Rep 15, 459-464.
Yang, Y., Fanning, L., and Jack, T. (2003). The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. The Plant Journal 33, 47-59.
Yanovsky, M.J., and Kay, S.A. (2002). Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308-312.
Zhou, H.L., He, S.J., Cao, Y.R., Chen, T., Du, B.X., Chu, C.C., Zhang, J.S., and Chen, S.Y. (2006). OsGLU1, a putative membrane-bound endo-1,4-beta-D-glucanase from rice, affects plant internode elongation. Plant Mol Biol 60, 137-151.