[1]R. Waser, R. Dittmann, G. Staikov, K. Szot, “Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges”, Adv. Mater. 21 (2009) 2632-2663.
[2]A. Gruverman and A. Kholkin, “Nanoscale ferroelectrics: processing, characterization and future trends”, Rep. Prog. Phys. 69 (2006) 2443-2474.
[3]C. Chappert, A. Fert and F. N. van Dau, “The emergence of spin electronics in data storage”, Nature Mater. 6 (2007) 813-823.
[4]M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nature Mater. 6 (2007) 824-832.
[5]S.-E. Ahn, M.-J. Lee, Y. Park, B. S. Kang, C. B. Lee, K. H. Kim, S. Seo, D.-S. Suh, D.-C. Kim, J. Hur, W. Xianyu, G. Stefanovich, H. Yin, I.-K. Yoo, J.-H. Lee, J.-B. Park and B. H. Park, “Write current reduction in transition oxide based resistance-change memory”, Adv. Mater. 20 (2008) 924-928.
[6]J. H. Choi, S. N. Das, and J. M. Myoung, “Controllable resistance switching behavior of NiO/SiO2 double layers for nonvolatile memory applications”, Appl. Phys. Lett. 95 (2009) 062105.
[7]M. Liu, Z. Abid, W. Wang, X. He, Q. Liu, and W. Guan, “Multilevel resistive switching with ionic and metallic filaments”, Appl. Phys. Lett. 94 (2009) 233106.
[8]W. G. Kim, S. W. Rhee, “Multilevel resistive switching with ionic and metallic filaments”, Microelectron. Eng. 86 (2009) 2153-2156.
[9]Y. Li, S. Long, M. Zhang, Q. Liu, L. Shao, S. Zhang, Y. Wang, Q. Zuo, S. Liu, and M. Liu, “Resistive switching properties of Au/ZrO2/Ag structure for low-voltage nonvolatile memory applications”, IEEE Electron Device Lett. 31 (2010) 117-119.
[10]A. Sawa, “Resistance Switching in transition metal oxide”, Mater. Today 11(2008) 28-36.
[11]H. Akinaga, H. Shima, “Resistive random access memory (RRAM) based on metal oxide”, Proc IEEE. 98 (2010) 2237-2251.
[12]K. Szot, W. Speier, G. Bihlmayer, R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3,” Nautre Mater. 5 (2006) 312-320.
[13]C. Y. Lin, D. Y. Lee, S. Y. Wang, C. C. Lin, T. Y. Tseng, “Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices,” Surf. Coat. Technol. 203 (2008) 628-631.
[14]C. Y. Lin, D. Y. Lee, S. Y. Wang, C. C. Lin, T. Y. Tseng, “Reproducible resistive switching behavior in sputtered CeO2 polycrystalline films,” Surf. Coat. Technol. 203 (2008) 480-483.
[15]C. J. Kim, S.-G. Yoon, K.-J. Choi, S.-O. Ryu, S.-M. Yoon, N.-Y. Lee and B.-G. Yu, “Characterization of silver-saturated Ge-Te chalcogendie thin films for nonvolatile random access memory,” J. Vac. Sci. Technol. B 24 (2006) 721-724.
[16]M. N. Kozicki, C. Gopalan, M. Balakrishnan and M. Mitkova, “A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte,” IEEE Trans. Nanotechnol. 5 (2006) 535-544.
[17]H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J.-E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S.-Y. Choi, “Graphene oxide thin films for flexible nonvolatile memory applications,” Nano Lett. 10 (2010) 4381-4386.
[18]G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, S. Seo, “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film”, Appl. Phys. Lett. 91 (2007) 222103.
[19]W. Wu, X. Tong, R. Zhao, L. Shi, H. Yang, and Y. C. Yeo, “Novel bipolar TaOx-based resistive random access memory”, 11th Annual Non-Volatile Memory Technology Symposium (NVMTS), Singapore, 7-9 Nov. 2011, 1-5.
[20]C. Vallee, P. Gonon, C. Jorel, and F. El Kamel, “Electrode oxygen-affinity influence on voltage nonlinearities in high-k metal-insulator-metal capacitors,” Appl. Phys. Lett. 96 (2010) 233504.
[21]A. Baikalov, Y. Q. Wang, B.Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue and C. W. Chu, “Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett. 83 (2003) 957-959.
[22]W.-G. Kim, S.-W. Rhee, “Effect of the top electrode material on the resistive switching of TiO2 thin film”, Microelectron. Eng. 87 (2010) 981-983.
[23]K. Fujiwara, T. Yajima, Y. Nakamura, M. J. Rozenberg, and H. Takagi, “Electrode-geometry control of the formation of a conductive bridge in oxide resistance switching devices”, Appl. Phys. Express. 2 (2009) 081401-081403.
[24]M. N. Kozicki, M. Yun, L. Hilt and A. Singh, “Applications of programmable resistance changes in metal-doped chalcogenides”, J. Electrochem. Soc. 99 (1999) 298-309.
[25]Y. Hirose and H. Hirose, “Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3 films”, J. Appl. Phys. 47 (1976) 2767-2772.
[26]Y. Tsuji, T. Sakamoto, N. Banno, H. Hada, and M. Aono, “Off-state and turn-on characteristics of solid electrolyte switch,” Appl. Phys. Lett. 96 (2010) 023504.
[27]D. Lee, D.-J. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S.-O. Seo, S. Heo, M. Jo, D.-K. Hwang, H. K. Park, M. Chang, M. Hasan and H. Hwang, “Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications,” IEDM (2006) 346733.
[28]S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H.Kawaura, K. Terabe, T. Nakayama and M. Aono, “A Nonvolatile Programmable Solid-Electrolyte Nanometer Switch”, IEEE J. Solid-State Circuits 40 (2005) 168-176.
[29]C. Shindler, G. Staikov, and R. Waser, “Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories”, Appl. Phys. Lett. 94 (2009) 072109.
[30]D. A. Neamen, Semiconductor Physics &; Devices, McGraw-Hill Science Inc., New York, 2002.
[31]J. C. Ranuarez, M. J. Deen, Chih-Hung Chen, “A review of gate tunneling current in MOS devices”, Microelectronics Reliability 46 (2006) 1939-1956.
[32]S.M Sez, Physics of Semiconductor Devices, 2nd Edition, John Wiley &; Sons Inc. New York, USA. 1981.
[33]Y. Xia, W. He, L. Chen, X. Meng, Z. Liu. “Field-induced resistive switching based on space-charge-limited current”, Appl. Phys. Lett. 90 (2007) 022907.
[34]K. C. Kao and W. Hwang, Electrical Transport in Solids, Academic, New York. 1970.
[35]T. Sakamoto, N. Banno, N. Iguchi, H. Kawaruwa, H. Sunamura, S. Fujieda, K. Terabe, T. Hasegawa, and M. Aono, “A Ta2O5 solid-electrolyte switch with improved reliability”, IEEE Symposium on, VLSI Technology, Kyoto, 12-14 June 2007 38-39.
[36]T. Y. Wu, F. Chen, M. J. Kao and M. J. Tsai, “Low current (5 pA) resistive switching memory using high-K Ta2O5 solid electrolyte”, Proceeding of the European, Solid State Device Research Conference, Athens, 14-18 Sept 2009 217-220.
[37]Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii1, K.Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji1, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, and T. Takagi, R. Yasuhara, K.Horiba, H. Kumigashira, and M. Oshima, “Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction Mechanism”, IEDM (2008) 1-4.
[38]J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, “High switching endurance in TaOx memristive devices”, Appl. Phys. Lett. 97 (2010) 232102.
[39]L. Zhang, R. Huang, D. Gao, Y. Pan, S. Qin, Z. Yu, C. Shi, Y. Wang, “Thermally stable TaOx-based resistive memory with TiN electrode for MLC application”, ICSICT 10th IEEE International Conference, Shanghai, China, 1-4 Nov 2010 1160-1162.
[40]M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur1, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures”, Nature Mater. 10 (2011) 625-630.
[41]C.-J. Li, S. Jou, W. L. Chen, ” Effect of Pt and Al Electrodes on Resistive Switching Properties of Sputter-Deposited Cu-Doped SiO2 Film”, Jpn. J. Appl. Phys. 50 (2011) 01BG08 1-4.
[42]T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, M. Aono, ” Electronic transport in Ta2O5 resistive switch”, Appl. Phys. Lett. 91 (2007) 092110 1-3.
[43]P. Zhou, M. Yin, H. J. Wan, H. B. Lu, T. A. Tang, and Y. Y. Lin, “ Role of TaON interface for CuxO resistive switching memory based on a combined model”, Appl. Phys. Lett. 94 (2009) 0535101-3.
[44]H. J. Wan, P. Zhou, L. Ye, Y. Y. Lin, J. G. Wu, H. Wu, M. H. Chi, “Retention-failure mechanism of TaN/CuxO/Cu resistive memory with good data retention capability”, J. Vac. Sci. Technol. B. 27 (2009) 2468.
[45]T. Riekkinen , J. Molarius, T. Laurila, A. Nurmela, I. Suni, J.K. Kivilahti, “Reactive sputter deposition and properties of TaxN thin films”, Microelectronic Eng. 64 (2002) 289–297.
[46]J.H. Hsieh, C.M. Wang, C. Li, “Deposition and characterization of TaN–Cu nanocomposite thin films”, Surf. Coat. Technol. 200 (2006) 3179 – 3183.
[47]C.K. Chung, T.S. Chen, N.W. Chang, “Effect of reactive gases flow ratios on the microstructure and electrical resistivity of Ta–N–O thin films by reactive co-sputtering”, Thin Solid Films 519 (2011) 5099–5012.
[48]利嘉仁,「共濺鍍法沉積之銅摻雜二氧化矽薄膜的電阻切換特性與電極效應」, 國立台灣科技大學工程技術研究所碩士論文,民國99年。[49]詹益明,「氧化亞銅-氧化鋅異質接面太陽能電池之研製」,國立台灣科技大學工程技術研究所碩士論文, 民國99年。[50]吳泰伯, 許樹恩, 「X光繞射原理與材料結構分析」, 中國材料科學學會, 民國95年9月。
[51]T. Riekkinen, J. Molarius, T. Laurila, A. Nurmela, I. Suni, and J.K. Kivilahti, “ Reactive sputter deposition and properties of TaxN thin films”, Microelectron. Eng. 64 (2002) 289-297.
[52]M. Hara, E. Chiba, A. Ishikawa, T. Takata, J. N. Kondo, and K. Domen, “Ta3N5 and TaON thin films on Ta foil: Surface composition and stability”, J. Phys. Chem. B, 107(2003) 13441-13445.
[53]A. Arranz, C. Palacio, “Composition of tantalum nitride thin films grown by low-energy nitrogen implantation: a factor analysis study of the Ta 4 f XPS core level”, Appl. Phys. A. 81(2005) 1405-1410.
[54]J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, USA 1992.
[55]I. Lyubinetsky, S. Thevuthasan, D.E. McCready, D.R. Baer, “Formation of single-phase oxide nanoclusters: Cu2O on SrTiO3(100)” J. Appl. Phys. 94 (2003) 7926-7928.
[56]王貞芮,「添加銅之二氧化矽複合薄膜之研究」,國立台灣科技大學材料科技研究所碩士論文, 民國94年。[57]Q. Xie, X. P. Qu , J. J. Tan, Y. L. Jiang, M. Zhou, T. Chen, G. P. Ru, “Superior thermal stability of Ta/TaN bi-layer structure for copper metallization”, Appl. Sur. Sci. 253 (2006) 1666–1672.
[58]H. Xu, W. Wang. “Template synthesis of multishelled Cu2O hollow spheres with a single‐crystalline shell wall”, Ang. Chem. Int. Ed. 46 (2007) 1489 –1492.
[59]J. W. Park, D. Y. Kim, J. K. Lee, “Reproducible resistive switching in nonstoichiometric nickel oxide films grown by rf reactive sputtering for resistive random access memory applications “, J. Vac. Sci. Technol., A 23 (2005) 1309-1313.
[60]H. Shima, F. Takano, H. Muramatsu, H.Akinaga, Y. Tamai, “Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode”, Appl. Phys. Lett. 93 (2008) 113504-113506.
[61]F. Volpi, L. Cadix, G. Berthome, E. Blanquet, N. Jourdan, J. Torres, “XPS studies of the ALD-growth of TaN diffusion barriers: Impact of the dielectric surface chemistry on the growth mechanism”, Microelectron. Eng. 85 (2008) 2068-2070.
[62]F. Kurnia, H.C.U. Jung, R. Jung, C. Liu, “Composition dependence of unipolar resistance switching in TaOx thin films”, Phys. Status Solidi RRL 5 (2011) 253.
[63]M. Scrocco, “Satellite structure in the x-ray photoelectron spectra of CuO and Cu2O”, Chem. Phys. Lett. 63 (1979) 52-56.
[64]A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, M. Taguchi, “Non-volatile resistive switching for advanced memory applications “, IEDM Tech. Dig. (2005) 746-749.
[65]K. Fujiwara, T. Nemoto, M.J. Rozenberg, Y. Nakamura, H. Takagi, “Resistance Switching and Formation of a Conductive Bridge in Metal/Binary Oxide/Metal Structure for Memory Devices”, Jpn. J. Appl. Phys. 47 (2008) 6266-6271.
[66]Y.C. Yang, C. Chen, F. Zeng, F. Pan, “Multilevel resistance switching in Cu/TaOx/Pt structures induced by a coupled mechanism”, J. Appl. Phys. 107 (2010) 093701-093705.