跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇暐翔
研究生(外文):Wei-shiang Su
論文名稱:氮化鎵薄膜及氮化銦鎵/氮化鎵量子井於氮化鋁緩衝層與矽基板之研究
論文名稱(外文):Studies of GaN thin films and InGaN/GaN quantum wells on Si substrates with AlN buffer layers
指導教授:鄭永楨
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:59
中文關鍵詞:氮化鎵薄膜氮化銦鎵/氮化鎵量子井
外文關鍵詞:GaN Thin FilmsInGaN/GaN quantum wells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究利用顯微拉曼光譜、掃描式電子顯微鏡、原子力顯微鏡、光致放光譜,探討不同氮化鋁緩衝層的成長條件對氮化物半導體薄膜成長在矽基板上之影響。
本研究分成兩個部分,第一部分是探討(111)晶面的矽基板上成長溫度由1000到700 ℃降溫方式成長的多層氮化鋁緩衝層上的氮化鎵薄膜性質。隨著氮化鋁緩衝層層數的增加,光致放光譜近帶邊放光能量籃移與強度增強,顯微拉曼光譜對應氮化鎵E2high與A1(LO)散射模態往高頻率偏移,掃描式電子顯微鏡表面裂紋密度降低,以及原子力顯微鏡影像顯示表面粗糙度降低,這些結果顯示此氮化鋁緩衝層成長方式有助於降低氮化鎵薄膜與矽基板間的拉伸應力。
第二部分研究延續第一部分,利用溫度由1100到700 ℃漸進降低方式成長多層氮化鋁緩衝層來提升氮化鎵薄膜品質,藉以成長氮化銦鎵/氮化鎵量子井來提升發光強度,實驗結果顯示隨氮化鋁緩衝層層數的增加,量子井光激發螢光譜近帶邊放光能量有藍位移與放光強度增強,說明量子井中的量子侷限史塔克效應減小,即量子井中壓應力降低有關。而在顯維拉曼光散射譜中,對應氮化鎵E2high與A1(LO)往高頻率偏移亦顯示此氮化鋁緩衝層成長方式有效降低氮化鎵薄膜與矽基板間的拉伸應力。
We use micro-Raman spectra, scanning electron microscope, atomic force microscope, and photoluminescence spectra to study the properties of III-V nitride semiconductor materials grown on (111) Si substrates with different growth conditions of AlN buffer layers.
The studies are divided into two parts. The first part is the growth of multiple AlN buffer layers with the decrease of growth temperature from 1000 to 700 oC. For the increase of the numbers of AlN buffer layer, it shows the blue shift of near band edge light emission energy and intensity, high energy shift of E2high and A1(LO) scattering modes of GaN from micro-Raman spectra, pronounced decrease of cracks density in scanning electron microscope images, and the reduced surface roughness in atomic force microscope images. These results indicate that such growth conditions of AlN buffer layers can help in decreasing tensile stress in GaN on (111) Si substrates.
The second part of the researches follow the first part. We also prepared the samples with AlN buffer layers on (111) Si substrates to improve the quality of GaN thin film. Furthermore, the InGaN/GaN multiple quantum wells were deposited on high quality GaN thin films. The near-band edge emission energies and intensities of samples show blue shift and increase respectively with the increase of the numbers of AlN buffer layer. This is due to the reduction of piezoelectric fields as well as the quantum confined Stark effect in InGaN/GaN multiple quantum wells. Also, the shift of E2high and A1(LO) modes of GaN from micro-Raman spectra were observed. The tensile stress in GaN on (111) Si substrates was decreased effectively .
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 導論 1
1-1 前言 1
1-2 研究動機 2
1-3 文獻回顧 4
第二章 實驗儀器及原理 15
2-1 光激發螢光光譜與變溫光激發螢光光譜 15
2-2 拉曼光譜 17
2-3 掃描式電子顯微鏡(Scanning Electron Microscope) 19
2-4 原子力顯微鏡(Atomic Force Microscope) 20
第三章 氮化鋁緩衝層於矽基板上成長氮化鎵之研究 21
3-1 前言 21
3-2 樣品結構 22
3-3 光激發光譜分析 24
3-4 顯微拉曼散射分析 25
3-5 掃描式電子顯微鏡分析 27
3-6 原子力顯微鏡分析分析 28
3-7 結果與討論 29
第四章 氮化鋁緩衝層於矽基板上成長氮化銦鎵/氮化鎵量子井之研究 38
4-1 前言 38
4-2 樣品結構 39
4-3 顯微拉曼分析 39
4-4 光激發光譜分析 41
4-5 結果與討論 43
第五章 總結 53
參考文獻 55
[1] Min-Ho Kim, Young-Gu Do, Hyon Chol Kang, Do Young Noh, and Seong-Ju Parka. Appl. Phys .Lett. 79,2713 (2001)
[2] H. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno,
Jpn. J. Appl. Phys., Part 2 38, L492 (1999).
[3] S. Zamir, B. Meyler, and J. Salzman, Appl. Phys. Lett. 78, 288 (2001).
[4] Y. Honda, Y. Kuroiwa, M. Kawaguchi, and N. Sawaki, Appl. Phys. Lett. 80,
222 (2002).
[5] Dadgar, J. Blasing, A. Diez, A. Alam, M. Heuken, and A. Krost, Jpn. J.
Appl. Phys., Part 2 39, L1183 (2000).
[6] Feltin, S. Dalmasso, P. de Mierry, B. Beaumont, H. Lahre_che, A.Bouille′,
H. Haas, M. Leroux, and P. Gibart, Jpn. J. Appl. Phys., Part 2 40,L738
(2001).
[7] Cheng, M. Leys, S. Degroote, M. Germain, and G. Borghs, Appl. Phys.
Lett. 92, 192111 (2008).
[8] Srinivasan Raghavan, Joan M. Redwing. J. Appl. Phys.98, 023514 (2005)
[9] R.Jothilingam, M.W. Koch, J. B.Posthill, and G. W. Wicks. J.Electron. Mater.30.7(2001)
[10] Anwar Hushur, Murli H. Manghnani, and Jagdish Narayan, J. Appl. Phys.106, 054317 (2009)
[11] X. Q. Shen, T. Ide, M. Shimizu, and H. Okumura. J. Appl. Phys.89, 5731(2001)
[12] 馮啟祐,以光調制光譜及光激發螢光光譜研究砷銻化鎵及氮化銦/氮化 鎵多層量子井的光電特性,國立成功大學物理研究所碩士論文(2009)
[13] 王太伸,以光調制光譜、光激發螢光光譜、拉曼光譜、穿透光譜、反射光譜研究GaAsSb/GaAs、ZnO、AlGaN/GaN、Oxide-GaAs材料光學特性,國立成功大學物理研究所博士論文(2007)
[14] 賴姿君,研究製作一維奈米金顆粒鏈狀結構的機制,國立台南大學材
料科學系碩士論文(2011)
[15] 汪建民,材料分析,中國材料科學學會(2008)
[16] Mark Fox, Optical Properties of Solids (second edition) ,Department of Physics and Astronomy, University of Sheffield.
[17] Eric Feltin,a) B. Beaumont, M. Lau‥ gt, P. de Mierry, P. Venne′gue` s, H. Lahre`che, M. Leroux, and P. Gibart Appl. Phys .Lett.79, 3230 (2001)
[18] Jianjun Tanga, Ting Lianga,b, Weili Shia, Qianqian Zhanga, Yong Wangc, Jun Liua,b, Jijun Xionga,b Applied Surface Science, 257 8846– 8849(2011)
[19] H. Tang, S. Haffouz, A. Powell, J. A. Bardwell, and J. Webb. Appl. Phys .Lett. 86,121110 (2005)
[20] E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
[21] S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
[22] T. C. Lu, S. W. Chen, T. T. Wu, P. M. Tu, C. K. Chen, C. H. Chen, Z. Y. Li, H. C. Kuo, and S. C. Wang, Appl. Phys. Lett. 97, 071114 (2010).
[23] C. C. Lin and C. T. Lee, IEEE Photon. Technol. Lett. 22, 1291 (2010).
[24] F. Bernardini and V. Fiorentini, Phys. Rev. B 56, R10024 (1997).
[25] S.-Y. Kwon, H. J. Kim, H. Na, Y.-W. Kim, H.-C. Seo, H. J. Kim, Y. Shin, E. Yoon, and Y.-S. Park, J. Appl. Phys. 99, 044906 (2006).
[26] Lei Liu, Lei Wang, Ding Li, Ningyang Liu, Lei Li, Wenyu Cao, Wei Yang, Chenghao Wan, Weihua Chen, Weimin Du, Xiaodong Hu, and Zhe Chuan Feng, J. Appl. Phys. 109, 073106 (2011)
[27] 劉柏挺、林正洋、顏勝宏、張永政、郭艷光, ,“Vegard''s law 的偏異對Wurtzite InxGa1-xN能隙與彎曲係數的影響,” 2003 年台灣光電科技研討會, paper FA3-8, OPT’03 ProceedingsII, pp. 66−68. (2003)
[28]High resolution electron beam testing of gallium nitride based light emitting diodes.Doctoral Thesis / Dissertation, 2008, 250 Pages
[29] D. D. Manchon, A. S. Barker, P. J. Dean, and R. B. Zetterstrom, Solid
State Commun. 8, 1227 (1970).
[30] V. Lemos, C. A. Argüello, and R. C. C. Leite, Solid State Commun. 11,1351 (1972).
[31] G. Burns, F. Dacol, J. C. Marinace, B. A. Scott, and E. Burstein, Appl.
Phys. Lett. 22, 356 (1973).
[32] A. Cingolani, M. Ferrara, M. Lugara, and G. Scamarcio, Solid State Commun.58, 823 (1986).
[33] S. Murugkar, R. Merlin, A. Botchkarev, A. Salvador, and H. Morkoc, J.
Appl. Phys. 77, 6042 (1995).

[34] T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura, J. Phys.: Condens.
Matter 7, L129 (1995).
[35] L. Bergman, D. Alexson, P. L. Murphy, R. J. Nemanich, M. Dutta, M. A.
Stroscio, C. Balkas, H. Shin, and R. F. Davis, Phys. Rev. B 59, 12977
(1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top