|
1. S.M. Ghiaasiaan, Two-Phase Flow Boiling and Condensation in Conventional and Miniature Systems, Cambridge, 2008. 2. S. G. Kandlikar, and W. J. Grande, Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology, Heat Transfer Engineering, 24(1)(2003)3-17. 3. P.A. Kew and K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Applied Thermal Engineering 17(1997)705-715. 4. S. G. Kandlikar, Heat transfer characteristics in partial boiling, fully developed boiling, and significant void flow regions of subcooled flow boiling, ASME Journal of Heat Transfer 120 (1998) 395-401. 5. J. G. Collier, Convective boiling and condensation, 2nd ed., McGraw-Hill, 1982. 6. P.S. Wu, The effects of concave curvature on subcooled flow boiling from a small, high heat flux region, Ph.D thesis, University of Minnesota, 1994. 7. Hsu, Y. Y., On the Size Range of Active Nucleation Cavities on a Heating Surface, ASME Journal of Heat Transfer 84(1962) 207–216. 8. Hahne, E., Spindle, K., and Shen., N., Incipience of Flow Boiling in Subcooled Well Wetting Fluids, Proceedings 9th International Heat Transfer Conference 2(1990)69–74. 9. R. Hino and T. Ueda, Studies on heat transfer and flow characteristics in subcooled flow boiling-part 1. boiling characteristics, International Journal of Multiphase Flow 11 (1985) 269-281. 10. M. W. Wambsganss, D. M. France, J. A. Jendrzejczyk and T. N. Tran, Boiling heat transfer in a horizontal small-diameter tube, ASME Journal of Heat Transfer 115(4)(1993)963-972. 11. G. M. Lazarek and S. H. Black, Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113, International Journal of Heat and Mass Transfer, 25(7)(1982)945-960. 12. Y. Fujita, Y. Yang and N. Fujita, Flow boiling heat transfer and pressure drop in uniformly heated small tubes, Proceedings of the Twelfth International Heat Transfer Conference 3(2002)743-748. 13. Z. Y. Bao, D. F. Fletcher and B. S. Haynes, Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages, International Journal of Heat and Mass Transfer 43(18)(2000)3347-3358. 14. X. Huo, L. Chen, Y. S. Tian and T. G. Karayiannis, Flow boiling and flow regimes in small diameter tubes, Applied Thermal Engineering 24(2004)1225-1239. 15. B. S. Haynes and D. F. Fletcher, Subcooled flow boiling heat transfer in narrow passages, International Journal of Heat and Mass Transfer 46(2003)3673-3682. 16. R. Yun, Y. Kim and M. S. Kim, Flow boiling heat transfer of carbon dioxide in horizontal mini tubes, International Journal of Heat and Fluid Flow, 26(2005)801-809. 17. W. Yu, D. M. France, M. W. Wambsganss and J. R. Hull, Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube, International Journal of Multiphase Flow 28(6)(2002)927-941. 18. V. V. Wadekar, Flow boiling of heptane in a plate-fin heat exchanger passage, Compact Heat Exchanger for Power and Process Industries, HTD, New York, Vol. 201,1992, pp.1-6. 19. H. Oh, M. Katsuta and K. Shibata, Heat transfer characteristics of R134a in a capillary tube heat exchanger, Proceedings of 11th International Heat Transfer Conference, Vol. 6,1998, pp.131-136 20. B. Sumith, F. Kaminaga and K. Matsumura, Saturated flow boiling of water in a vertical small diameter tube, Experimental Thermal and Fluid Science 27(7)(2003)789-801. 21. Y. M. Lie and T. F. Lin, Saturated flow boiling heat transfer and associated bubble characteristics of R-134a in a narrow annular duct, International Journal of Heat and Mass Transfer 48(25-26)(2005)5602-5615. 22. Y. M. Lie and T. F. Lin, Subcooled flow boiling heat transfer and associated bubble characteristics of R-134a in a narrow annular duct, International Journal of Heat and Mass Transfer 49(13-14)(2006)2077-2089. 23. D. S. Wen, Y. Tan and D. B. R. Kenning, Saturated flow boiling of water in a narrow channel: time-averaged heat transfer coefficients and correlations, Applied Thermal Engineering 24(2004)1207-1223. 24. T. N. Tran, M. W. Wambsganss and D. M. France, Small circular- and rectangular-channel boiling with two refrigerants, International Journal of Multiphase Flow 22(1996)485-498. 25. B. Agostini and A. Bontemps, Vertical flow boiling of refrigerant R134a in small channels, International Journal of Heat and Fluid Flow 26(2005)296-306. 26. S. G. Kandlikar and M. E. Steinke, Flow boiling heat transfer coefficient in minichannels – correlation and trends, Proceedings of the Twelfth International Heat Transfer Conference, vol.3(2002)785-790. 27. S. Lin, P. A. Kew and K. Cornwell, Two-phase heat transfer to a refrigerant in a 1mm diameter tube, International Journal of Refrigeration 24(1)(2001)51-56. 28. B. Watel, Review of saturated flow boiling in small passages of compact heat exchangers, International Journal of Thermal Science 42(2003)107-140. 29. S. G. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels, Experimental Thermal and Fluid Science 26(2002)389-407. 30. J. R. Thome, Boiling in microchannels: a review of experiment and theory, International Journal of Heat and Fluid Flow 25(2004)128-139. 31. C. Vlasie, H. Macchi, J. Guilpart and B. Agostini, Flow boiling in small diameter channels, International Journal of Refrigeration 27(2004)191-201. 32. R. Hohl, J. Blum, M. Buchholz, T. Luttich, H. Auracher, W. Marquardt, “Model-based Experimental Analysis of Pool Boiling Heat Transfer with Controlled Wall Temperature Transients,”International Journal of Heat Transfer, Vol. 43 (2001) 2225-52238. 33. A. Sakurai and M. Shiotsu, “Transient Pool Boiling Heat Transfer – I. Incipient Boiling Superheat,” International Journal of Heat Transfer 99 (1999) 547-553. 34. K. Okuyama, Y. Kozawa, A. Inoue and S. Aoki, “Transient Boiling Heat Transfer Characteristics of R113 at Large Stepwise Power Generation,” International Journal of Heat and Mass Transfer 31(10) (1988) 2161-2174. 35. K. Okuyama amd Y. Iida, “Transient Boiling Heat Transfer Characteristics of Nitrogen (bubble behavior and heat transfer rate at stepwise heat generation),” International Journal of Heat and Mass Transfer 33(10) (1990) 2065-2071 36. Marie-Christine Duluc, B. Stutz and M. Lallem, “Transient nucleate boiling under stepwise heat generation for highly wetting fluids,” International Journal of Heat and Mass Transfer 47 (2004) 5541-5553. 37. H. Auracher and W. Marquardt, “Heat transfer characteristics and mechanisms along entire boiling curves under steady-state and transient conditions,” International Journal of Heat and Fluid Flow 25 (2004) 223-242. 38. M. Girault and D. Petit, “Resolution of Linear Inverse Forced Convection Problems Using Model Reduction by the Modal Identification Method: Application to Trubulent Flow in parralle-Plate Duct,” International Journal of Heat and Mass Transfer 47 (2004) 3909-3925. 39. H.Bhowmik and K.W. Tou, “Study of transient forced convection heat transfer from Discrete Heat Sources in a FC-72 Cooled Vertical Channel,” International Journal of Thermal Sciences 44 (2005) 499-505. 40. H. Bhowmik and K.W. Tou, “Experimental study of transient natural convection heat transfer from simulated electronic chips,” Experimental Thermal and Fluid Science 29 2005 485-492). 41. H. Bhowmik and K.W. Tou, “Thermal Behavior of Simulated Chips During Power-off Transient Period,” Electronics Packaging Technology congerence2003 42. T. Otsuji and A. Kurosawa, “Critical Heat Flux of Forced Convection Boiling in an Oscillating Acceleration Field : I – General Trends,” Nuclear Engineering and Design 71 (1982) 15-26. 43. T. Otsuji and A. Kurosawa, “Critical Heat Flux of Forced Convection Boiling in an Oscillating Acceleration Field : II – Contribution of Flow Oscillation,” Nuclear Engineering and Design 76 (1983) 13-21. 44. S. Kakac, T. N. Veziroglu, M. M. Padki, L. Q. Fu, and X. J. Chen, “Investigation of Thermal Instabilities in a Forced Convection Upward Boiling System,” Experimental Thermal and Fluid Science 3 (1990) 191-201. 45. M. M. Padki, H. T. Liu, and Kakac, “Two-Phase Flow Pressure-Drop type and Thermal Oscillations,” International Journal of Heat and Fluid Flow 12 (1991) 240-248. 46. Y. Ding, S. Kakac, and X. J. Chen, “Dynamic Instabilities of Boiling Two-Phase Flow in a Single Horizontal Channel,” Experimental Thermal and Fluid Science 11 (1995) 327-342. 47. O. Comakli, S. Karsli, and M. Yilmaz, “Experimental investigation of two phase flow instabilities in a horizontal in-tube boiling system,” Energy Conversion and Management 43 (2002) 249-268 48. P. R. Mawasha and R. J. Gross, “Periodic Oscillations in a Horizontal Single Boiling Channel with Thermal Wall Capacity,” International Journal of Heat and Fluid Flow 22 (2001) 643-649. 49. Q. Wang, X. J. Chen, S. Kakac, and Y. Ding, “Boiling Onset Oscillation : a new type of Dynamic Instability in a Forced-Convection Upflow Boiling System,” International Journal of Heat and Fluid Flow 17( 1996) 418-423. 50. D. Brutin, F. Topin, and L. Tadrist, “Experimental Study of Unsteady Convective Boiling in Heated Minichannels,” International Journal of Heat and Mass Transfer 46 (2003) 2957-2965. 51. D. Brutin and L. Tadrist, “Pressure Drop and Heat Transfer Analysis of Flow Boiling in a Minichannel : Influence of the Inlet Condition on Two-phase Flow Stability,” International Journal of Heat and Mass Transfer 47 (2004) 2365-2377. 52. J. Shuai, R. Kulenovic, and M. Groll, “Pressure Drop Oscillations and Flow Patterns for Flow Boiling of Water in Narrow Channel,” Proceedings of International Conference on Energy and the Environment, Shanghai, China, May 22-24, 2003. 53. S. Kakac and B. Bon, A Review of two-phase flow dynamic instabilities in tube boiling systems, International Journal of Heat and Mass Transfer 51 (2008) 399-433. 54. L. Tadrist, Review on two-phase flow instabilities in narrow spaces, International Journal of Heat and Fluid Flow 28 (2007) 54-62. 55. C. H. Sheng and B. Palm, The visualization of boiling in small diameter tubes, in: Proc. of International Conference on Heat Transfer and Transport Phenomena in Microscale, 2000, pp. 204-208. 56. P. C. Lee, F. G. Tseng, and C. Pan, Bubble dynamics in microchannels. Part I: single microchannel. International Journal of Heat and Mass Transfer 47 (2004) 5575-5589. 57. H. Y. Li, F. G. Tseng, and C. Pan, Bubble dynamics in microchannels. Part II: two parallel microchannels. International Journal of Heat and Mass Transfer 47 (2004) 5591-5601. 58. C. Bang, W. P. Baek, and S. H. Chang, A digital photographic study on nucleate boiling in subcooled flow for water and refrigerant 134a fluids, in: Proc. of 10th International Conference on Nuclear Engineering 3(2002)155-162. 59. R. Situ, Y. Mi, M. Ishii, and M. Mori, Photographic study of bubble behaviors in forced convection subcooled boiling, International Journal of Heat and Mass Transfer 47 (2004) 3659-3667. 60. E. L. Bibeau and M. Salcudean, A study of bubble ebullition in forced-convective subcooled nucleate boiling at low pressure, International Journal of Heat and Mass Transfer 37 (15) (1994) 2245-2259. 61. C. P. Yin, Y. Y. Yan, T. F. Lin and B. C. Yang, Subcooled flow boiling heat transfer of R-134a and associated bubble characteristics in a horizontal annular channel, International Journal of Heat and Mass Transfer 43 (2000) 1885-1896. 62. G. E. Thorncroft, J. F. Klausner and R. Mei, An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling, International Journal of Heat and Mass Transfer 41 (23)(1998) 3857-3871. 63. G. E. Thorncroft and J. F. Klausner, The influence of vapor bubble sliding on forced convection boiling heat transfer, ASME Journal of Heat Transfer 121 (1999) 73-79. 64. O. Zeitoun and M. Shoukri, Bubble behavior and mean diameter in subcooled flow boiling, ASME Journal of Heat Transfer 118 (1996) 110-116. 65. J. F. Klausner, R. Mei, D. M. Bernhard, and L. Z. Zeng, Vapor bubble departure in forced convection boiling, International Journal of Heat and Mass Transfer 36(3) (1993) 651-662. 66. L. H. Chien and R. L. Webb, Measurement of bubble dynamics on an enhanced boiling surface, Experimental Thermal and Fluid Science 16 (1998) 177-186. 67. S. R. Yang and R. H. Kim, A Mathematical Model of Pool Boiling Nucleation Site Density in Terms of Surface Characteristics, International Journal of Heat and Mass Transfer 31(1988)1127–1135. 68. R. F. Gaertner, Distribution of Active Sites in the Nucleate Boiling of Liquids, Chem. Eng. Prog., Symp. Ser. 59(1963)52–61. 69. M. Sultan and R. L. Judd, Spatial Distribution of Active Sites and Bubble Flux Density, ASME Journal of Heat Transfer 100(1978)56–62. 70. L. Z. Zeng and J. F. Klausner, Nucleation Site Density in Forced Convection Boiling, ASME Journal of Heat Transfer 115,(1993) 215–221. 71. G.. Kocamustafaogullari and M. Ishii, Interfacial Area and Nucleation Site Density in Boiling Systems, International Journal of Heat and Mass Transfer 26(9)(1983) 1377–1387. 72. N. Basu, G.R. Warrier, and V.K. Dhir, Onset of nucleate boiling and active nucleation site density during subcooled flow boiling, ASME Journal of Heat Transfer 124 (2002) 717–728. 73. J. C. Chen, A correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Engng. Chem. Proc. Des. Dev. 5(1966)322-329. 74. F. W. Dittus and L. M. K. Boelter, Heat transfer in automobile radiator of the tube type, Publication in Engineering, University of California, Berkley, 2(1930)250. 75. K. E. Gungor and R. H. S. Winterton, A general correlation for flow boiling in tubes and annuli, International Journal of Heat and Mass Transfer 29(1986)351-358. 76. Z. Liu and R. H. S. Winterton, A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation, International Journal of Heat and Mass Transfer 34(1991)2759-2766. 77. W. Zhang, T. Hibiki and K. Mishima, Correlation for flow boiling heat transfer in mini-channels, International Journal of Heat and Mass Transfer 47(2004)5749-5763. 78. S. G. Kandlikar, A general correlation for two-phase flow boiling heat transfer coefficient inside horizontal and vertical tubes, Journal of Heat Transfer 102(1990)219-228. 79. S. G. Kandlikar, A model for predicting the two-phase flow boiling heat transfer coefficient in augmented tube and compact heat exchanger geometries, Journal of Heat Transfer 113(1991)966-972. 80. S. G. Kandlikar and P. Balasubramanian, An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannles and microchannels, Heat Transfer Engineering 25(2004)86-93. 81. K. Cornwell and P. A. Kew, Boiling in small parallel channels, Energy Efficiency in Process Technology, P.A. Pilavachi, Elsevier Applied Science, London, 1993, pp. 624-638. 82. ASHRAE Handbook of Fundamentals 1968 83. S. W. Churchill and H. H. S. Chu, Correlating equations for laminar and turbulent free convection from a horizontal cylinder, International Journal of Heat and Mass Transfer 18(1975)1049-1053. 84. S. J. Kline and F. A. McClintock, Describing uncertainties in single-sample experiments, Mech. Eng. 75(1)(1953)3-12. 85. V. Gnielinski, New equations for heat and mass transfer in turbulent pipe and channel flow, International Chemical Engineering 16(2)(1976)359-368. 86. M.N. Ozisik, Basic Heat Transfer, Chapter 4, McGraw-Hill, 1997. 87. A. Bejan, Convection Heat Transfer, Chapter 11, 3rd Ed., John Wiley & Son, New Jersey, 2004. 88. Y. M. Lie, Heat transfer and bubble characteristics associated with flow boiling of refrigerant R-134a in a horizontal narrow annular duct, Ph.D thesis, National Chiao Tung University, Taiwan (2006).
|