跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.121) 您好!臺灣時間:2025/12/11 09:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇矩賢
研究生(外文):Chu-Hsien Su
論文名稱:以文獻探勘基因與基因關係重建大腸桿菌之生物反應網路
論文名稱(外文):Reconstruction of Interaction Networks of Escherichia coli through Literature Mining of Gene-Gene Relations
指導教授:張傳雄
指導教授(外文):Chuan-Hsiung Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學資訊研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:84
中文關鍵詞:文獻探勘大腸桿菌生物反應網路
外文關鍵詞:Text miningEscherichia coliInteraction Network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
過去有關重建生物反應網路的研究指出基於網路的方法可以顯示特定物種的基因和基因產物的關係。在本研究裡我們使用大腸桿菌K-12 MG1655這個重要的模式生物作為重建生物反應網路的特定物種。有關大腸桿菌的生物反應資料通常可在資料庫以及文獻裡取得;但在資料庫裡大多數的生物反應都缺少詳細的文獻註解;而且要單純透過人工閱讀大量的文獻來獲取生物反應的註解也是相當的困難。
因此我們使用文獻探勘(text mining)的方法從PubMed資料庫裡310,378篇有關大腸桿菌的文獻摘要來自動提取生物反應並且提供句子描述生物反應如何發生的詳細註解。我們的文獻探勘方法在隨機抽樣的評估結果中在辨識基因調控(gene regulations)、相互作用(physical interactions)以及訊號傳遞(signal transductions)這三種生物反應的F-score值可達到0.81、0.86和0.93。經由文獻探勘提取的結果,再以人工驗證文獻的內容確,最後確認出1,084個生物反應;其中394個生物反應是我們從資料庫所蒐集到的生物反應所沒包含的。這394個新找的生物反應可對目前大腸桿菌的生物反應網路提供新的觀點以及可連接生物反應網路裡的空隙。文獻探勘的方法在辨識生物反應的準確度(precision)可達52%,而且提供句子描述的詳細註解給12% 從資料庫所蒐集到的生物反應。
我們對文獻探勘新找的生物反應所參與的基因進行功能顯著分析(functional enrichment analysis)後發現顯著的功能分類(functional category)是DNA的複製和修復、生物膜的形成及細胞運動並且和RpoS基因主導的應激反應(stress response)有關。
結合從資料庫蒐集以及文獻探勘提取的生物反應可重建大腸桿菌新的整合式生物反應網路。在整合式生物反應網路裡,新找到的生物反應可連結從資料庫蒐集的生物反應產生的離散子網路,而且也讓基因調控網路的階層結構產生變化。

Previous studies of reconstructing interaction networks indicated that network-based methods represent the relationships between genes and gene products of the target organisms. In this study we used E. coli K-12 MG1655, an important model organism, as the target organism for reconstructing interaction networks. Interactions of E. coli large molecules are usually obtained from databases and literature. Most interactions in the databases are lacking of literature supports. It is challenging to retrieve traceable literature citations for these interactions of E. coli manually.
We applied text mining methods to extract interactions from 310,378 abstracts of E. coli researches in PubMed databases and provide sentence-level annotations of the interactions. F-scores of 0.81, 0.86, and 0.93 were achieved for identification of gene regulations, physical interactions and signal transductions by text mining in random sampling evaluations. 1,084 interactions were identified after text mining extraction. We found that 394 of the 1,084 interactions were newly identified interactions comparing to collected interactions from the E. coli databases. These 394 newly identified interactions provided new insights and bridged the gaps in the interaction networks of E. coli. The precision of 52% was achieved for the identifications of interactions through text mining. We provided sentence-level annotations for 12% of collected interactions in the E. coli databases.
We performed functional enrichment analysis of the genes involved in the newly identified interaction extracted by text mining. The enriched functional categories are DNA replication and repair, biofilm formation, and cell motility associated with RpoS-centered stress responses of E. coli.
After combing interactions collected from the databases and extracted through text mining, we reconstructed integrated networks of E. coli. From the integrated networks, we found that the newly identified interactions filled the gaps between separated components of the interaction networks based on collected interactions from the databases. The newly identified interactions also led to the organizational changes of hierarchical structure of E. coli’s gene regulatory networks.

ACKNOWLEDGMENTS I
中文摘要 II
ABSTRACT IV
CONTENTS VI
LIST OF TABLES IX
LIST OF FIGURES X
CHAPTER 1. INTRODUCTION 1
1.1 Biological interactions, biological networks and integrated networks 1
1.2 How to reconstruct biological interaction networks? 1
1.3 Current interaction collections and interaction networks of E coli 2
1.4 The use of text mining in reconstructing the interaction networks of E. coli 4
1.5 Goal and specific aims 5
CHAPTER 2. MATERIALS AND METHODS 8
2.1 Retrieve abstracts of published researches on E. coli 8
2.2 Recognize names of genes and gene products in the collected abstracts 8
2.3 Extract interactions from the sentences of the collected abstracts 10
2.4 Comparison of interactions extracted by text mining with interactions collected from databases 14
2.5 Functional enrichment analysis 14
CHAPTER 3. RESULTS 16
3.1 F-scores achieved for identifications of GRs, PIs and STs through text mining 16
3.2 The interactions correctly identified by text mining 16
3.3 The interactions extracted by text mining that were found and not found in the collected E. coli databases 16
3.4 Genes involved in text mining extracted interactions are enriched in transcription, DNA replication and signal transduction 21
3.5 Genes involved in the new interactions were more enriched in DNA replication and repair, biofilm formation, cell motility than genes involved in the total interactions extracted by text mining 27
3.6 The integrated networks of E. coli reconstructed by interactions derived from databases and text mining 29
CHAPTER 4. DISCUSSIONS 32
4.1 SRL is effective to identify PIs, and DKF is effective to identify STs 32
4.2 Limitations on interaction discoveries based on text mining 33
4.3 The organization of gene regulatory networks of E. coli may not be hierarchical 34
4.4 New interactions brought new biological insights on the stress responses in E. coli 35
CHAPTER 5. CONCLUSIONS 37
5.1 Next-generation text mining for reconstructions of biological interactions 37
5.2 New discoveries of E. coli’s interaction networks based on text mining 37
Future works 38
REFERENCE 40
TABLES 50
FIGURES 57

LIST OF TABLES
Table 1. The number of abstracts, sentences and entity pairs of training corpuses for machine learning based scoring models. 50
Table 2. Evaluation results of four text mining strategies for identifications of GRs, PIs and STs based on randomly samplings. 51
Table 3. The data sources and quantities of E. coli’s interactions collected from the databases. 52
Table 4. The results of manual curation for the interactions extracted by “MLS with SRL and DKF” text mining strategy. 53
Table 5. The enriched COG functional categories in the newly identified interactions extracted by text mining. 54
Table 6. The enriched MultiFun (level 2) functional categories in the newly identified interactions extracted by text mining. 55
Table 7. The enriched KO (level 2) functional categories in the newly identified interactions extracted by text mining. 56

LIST OF FIGURES
Figure 1. The growth of curated articles in EcoCyc database and articles associated with E. coli archived in PubMed database (2004 - 2013). 57
Figure 2. The workflow of text mining based interaction extraction. 58
Figure 3. The numbers of abstracts, entity pairs and entities of each step in the workflow based on 301,378 PubMed abstracts. 60
Figure 4. The comparisons of F-scores, precisions and recalls for four text mining strategies in random sampling evaluations. 62
Figure 5. The comparison of compositions of the 394 new interactions, 690 known interactions, and total 1,084 interactions extracted by text mining. 63
Figure 6. The recovered degradation pathway of sigma factor 38, RpoS based on the newly identified ST under oxidative stress. 64
Figure 7. The precisions of “MLS with SRL and DKF” text mining strategy to identify 1,084 total interactions and 690 known interactions. 65
Figure 8. Example of a sentence-level annotation for a gene regulation between ompR and ompC in RegulonDB database. 66
Figure 9. Recoveries of the interactions and the key molecules by “MLS with SRL and DKF” and “MLS” text mining strategies. 67
Figure 10. The compositions of interactions within the five enriched COG functional categories. 69
Figure 11. The compositions of interactions within the five enriched MultiFun (level 1) functional categories. 70
Figure 12. The compositions of interactions within the twenty enriched MultiFun (level 2) functional categories. 71
Figure 13. The compositions of interactions within the seven enriched KO (level 2) functional categories. 73
Figure 14. Integrated networks reconstructed by the interactions derived from the databases and text mining. 74
Figure 15. Networks reconstructed by the interactions collected from the databases. 76
Figure 16. Reductions and generations of connected components in the networks derived from the databases by introducing newly identified interactions based on text mining. 78
Figure 17. The organizational change of E. coli’s gene regulatory networks layers decreased after we introducing 79 new GRs extracted by text mining. 80
Figure 18. The numbers of genes in each hierarchical layer of E. coli’s gene regulatory networks with and without newly identified GRs extracted by text mining. 83
Figure 19. An rpoS-centered network generated by interactions collected from the databases and extracted by text mining. 84

1. Ahmed, N., Majeed, A.A., Ahmed, I., Hussain, M.A., Alvi, A., Devi, S.M., Rizwan, M., Ranjan, A., Sechi, L.A., and Megraud, F. (2007). genoBASE pylori: a genotype search tool and database of the human gastric pathogen Helicobacter pylori. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 7, 463-468.
2. Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N., and Barabasi, A.L. (2004). Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427, 839-843.
3. Arifuzzaman, M., Maeda, M., Itoh, A., Nishikata, K., Takita, C., Saito, R., Ara, T., Nakahigashi, K., Huang, H.C., Hirai, A., et al. (2006). Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res 16, 686-691.
4. Barabasi, A.L., and Oltvai, Z.N. (2004). Network biology: understanding the cell's functional organization. Nat Rev Genet 5, 101-113.
5. Barbosa-Silva, A., Soldatos, T.G., Magalhaes, I.L., Pavlopoulos, G.A., Fontaine, J.F., Andrade-Navarro, M.A., Schneider, R., and Ortega, J.M. (2010). LAITOR--Literature Assistant for Identification of Terms co-Occurrences and Relationships. BMC Bioinformatics 11, 70.
6. Berger, A.L., Pietra, V.J.D., and Pietra, S.A.D. (1996). A maximum entropy approach to natural language processing. Computational linguistics 22, 39-71.
7. Boxem, M., Maliga, Z., Klitgord, N., Li, N., Lemmens, I., Mana, M., de Lichtervelde, L., Mul, J.D., van de Peut, D., Devos, M., et al. (2008). A protein domain-based interactome network for C. elegans early embryogenesis. Cell 134, 534-545.
8. Brown, P.O., and Botstein, D. (1999). Exploring the new world of the genome with DNA microarrays. Nat Genet 21, 33-37.
9. Burckstummer, T., Bennett, K.L., Preradovic, A., Schutze, G., Hantschel, O., Superti-Furga, G., and Bauch, A. (2006). An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nature methods 3, 1013-1019.
10. Butland, G., Peregrin-Alvarez, J.M., Li, J., Yang, W., Yang, X., Canadien, V., Starostine, A., Richards, D., Beattie, B., Krogan, N., et al. (2005). Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531-537.
11. Carneiro, S., Lourenco, A., Ferreira, E.C., and Rocha, I. (2011). Stringent response of Escherichia coli: revisiting the bibliome using literature mining. Microb Inform Exp 1, 14.
12. Carter, G.W. (2005). Inferring network interactions within a cell. Brief Bioinform 6, 380-389.
13. Cosentino Lagomarsino, M., Jona, P., Bassetti, B., and Isambert, H. (2007). Hierarchy and feedback in the evolution of the Escherichia coli transcription network. Proc Natl Acad Sci U S A 104, 5516-5520.
14. Covert, M.W., Xiao, N., Chen, T.J., and Karr, J.R. (2008). Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24, 2044-2050.
15. Czarnecki, J., Nobeli, I., Smith, A.M., and Shepherd, A.J. (2012). A text-mining system for extracting metabolic reactions from full-text articles. BMC bioinformatics 13, 172.
16. Dai, H.J., Chang, Y.C., Tsai, R.T., and Hsu, W.L. (2011). Integration of gene normalization stages and co-reference resolution using a Markov logic network. Bioinformatics 27, 2586-2594.
17. Diaz-Mejia, J.J., Babu, M., and Emili, A. (2009). Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev 33, 66-97.
18. Enright, A.J., Iliopoulos, I., Kyrpides, N.C., and Ouzounis, C.A. (1999). Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86-90.
19. Fang, Y.C., Lai, P.T., Dai, H.J., and Hsu, W.L. (2011). MeInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature. BMC Bioinformatics 12, 471.
20. Fu, Y., Jarboe, L.R., and Dickerson, J.A. (2011). Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities. BMC Bioinformatics 12, 233.
21. Galperin, M.Y. (2004). Bacterial signal transduction network in a genomic perspective. Environmental microbiology 6, 552-567.
22. GuoDong, Z., Jian, S., Jie, Z., and Min, Z. (2005). Exploring various knowledge in relation extraction. Paper presented at: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (Association for Computational Linguistics).
23. Gutierrez-Rios, R.M., Rosenblueth, D.A., Loza, J.A., Huerta, A.M., Glasner, J.D., Blattner, F.R., and Collado-Vides, J. (2003). Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. Genome Res 13, 2435-2443.
24. Hagiwara, D., Sugiura, M., Oshima, T., Mori, H., Aiba, H., Yamashino, T., and Mizuno, T. (2003). Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. Journal of bacteriology 185, 5735-5746.
25. Herrgard, M.J., Lee, B.S., Portnoy, V., and Palsson, B.O. (2006). Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res 16, 627-635.
26. Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., et al. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180-183.
27. Hoffmann, R., and Valencia, A. (2004). A gene network for navigating the literature. Nat Genet 36, 664.
28. Huang, H.Y., Chang, H.Y., Chou, C.H., Tseng, C.P., Ho, S.Y., Yang, C.D., Ju, Y.W., and Huang, H.D. (2009). sRNAMap: genomic maps for small non-coding RNAs, their regulators and their targets in microbial genomes. Nucleic Acids Res 37, D150-154.
29. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98, 4569-4574.
30. Jones, R.B., Gordus, A., Krall, J.A., and MacBeath, G. (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168-174.
31. Kaewphan, S., Kreula, S., Van Landeghem, S., Van de Peer, Y., Jones, P., and Ginter, F. (2012). Integrating large-scale text mining and co-expression networks: targeting NADP (H) metabolism in E. coli with event extraction. Paper presented at: Proceedings of the 3rd Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM’12).
32. Kambhatla, N. (2004). Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations. Paper presented at: Proceedings of the ACL 2004 on Interactive poster and demonstration sessions (Association for Computational Linguistics).
33. Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27-30.
34. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40, D109-114.
35. Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., et al. (2012). The IntAct molecular interaction database in 2012. Nucleic Acids Res 40, D841-846.
36. Keseler, I.M., Mackie, A., Peralta-Gil, M., Santos-Zavaleta, A., Gama-Castro, S., Bonavides-Martinez, C., Fulcher, C., Huerta, A.M., Kothari, A., Krummenacker, M., et al. (2013). EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41, D605-612.
37. Kim, J.D., Ohta, T., Tateisi, Y., and Tsujii, J. (2003). GENIA corpus--semantically annotated corpus for bio-textmining. Bioinformatics 19 Suppl 1, i180-182.
38. Lee, J.M., Gianchandani, E.P., Eddy, J.A., and Papin, J.A. (2008a). Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 4, e1000086.
39. Lee, S.A., Chan, C.H., Tsai, C.H., Lai, J.M., Wang, F.S., Kao, C.Y., and Huang, C.Y. (2008b). Ortholog-based protein-protein interaction prediction and its application to inter-species interactions. BMC Bioinformatics 9 Suppl 12, S11.
40. Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F., Palma, A., Nardozza, A.P., Santonico, E., et al. (2012). MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40, D857-861.
41. Lin, C.C., Juan, H.F., Hsiang, J.T., Hwang, Y.C., Mori, H., and Huang, H.C. (2009). Essential core of protein-protein interaction network in Escherichia coli. Journal of proteome research 8, 1925-1931.
42. Ma, H.W., Buer, J., and Zeng, A.P. (2004a). Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach. BMC Bioinformatics 5, 199.
43. Ma, H.W., Kumar, B., Ditges, U., Gunzer, F., Buer, J., and Zeng, A.P. (2004b). An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic Acids Res 32, 6643-6649.
44. Madan Babu, M., and Teichmann, S.A. (2003). Evolution of transcription factors and the gene regulatory network in Escherichia coli. Nucleic Acids Res 31, 1234-1244.
45. Maglott, D., Ostell, J., Pruitt, K.D., and Tatusova, T. (2011). Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 39, D52-57.
46. Martínez-Antonio, A. (2011). Escherichia coli transcriptional regulatory network. Network Biology 1, 21-33.
47. Martinez-Antonio, A., and Collado-Vides, J. (2003). Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6, 482-489.
48. Martinez-Antonio, A., Janga, S.C., and Thieffry, D. (2008). Functional organisation of Escherichia coli transcriptional regulatory network. Journal of molecular biology 381, 238-247.
49. McCloskey, D., Palsson, B.O., and Feist, A.M. (2013). Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Molecular systems biology 9, 661.
50. Ono, T., Hishigaki, H., Tanigami, A., and Takagi, T. (2001). Automated extraction of information on protein-protein interactions from the biological literature. Bioinformatics 17, 155-161.
51. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D., and Yeates, T.O. (1999). Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96, 4285-4288.
52. Peregrin-Alvarez, J.M., Xiong, X., Su, C., and Parkinson, J. (2009). The Modular Organization of Protein Interactions in Escherichia coli. PLoS Comput Biol 5, e1000523.
53. Phee, B.K., Shin, D.H., Cho, J.H., Kim, S.H., Kim, J.I., Lee, Y.H., Jeon, J.S., Bhoo, S.H., and Hahn, T.R. (2006). Identification of phytochrome-interacting protein candidates in Arabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOF MS. Proteomics 6, 3671-3680.
54. Rodriguez-Penagos, C., Salgado, H., Martinez-Flores, I., and Collado-Vides, J. (2007). Automatic reconstruction of a bacterial regulatory network using Natural Language Processing. BMC Bioinformatics 8, 293.
55. Salgado, H., Peralta-Gil, M., Gama-Castro, S., Santos-Zavaleta, A., Muniz-Rascado, L., Garcia-Sotelo, J.S., Weiss, V., Solano-Lira, H., Martinez-Flores, I., Medina-Rivera, A., et al. (2013). RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 41, D203-213.
56. Saric, J., Jensen, L.J., Ouzounova, R., Rojas, I., and Bork, P. (2006). Extraction of regulatory gene/protein networks from Medline. Bioinformatics 22, 645-650.
57. Saric, J., Jensen, L.J., and Rojas, I. (2005). Large-scale extraction of gene regulation for model organisms in an ontological context. In Silico Biol 5, 21-32.
58. Sauro, H.M., and Kholodenko, B.N. (2004). Quantitative analysis of signaling networks. Progress in biophysics and molecular biology 86, 5-43.
59. Serres, M.H., Goswami, S., and Riley, M. (2004). GenProtEC: an updated and improved analysis of functions of Escherichia coli K-12 proteins. Nucleic Acids Res 32, D300-302.
60. Shen-Orr, S.S., Milo, R., Mangan, S., and Alon, U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31, 64-68.
61. Sommer, E. (2012). In vivo study of the two-component signaling network in Escherichia coli.
62. Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. (2000). The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28, 33-36.
63. Tsai, R.T., Chou, W.C., Su, Y.S., Lin, Y.C., Sung, C.L., Dai, H.J., Yeh, I.T., Ku, W., Sung, T.Y., and Hsu, W.L. (2007). BIOSMILE: a semantic role labeling system for biomedical verbs using a maximum-entropy model with automatically generated template features. BMC Bioinformatics 8, 325.
64. Tsai, R.T., Sung, C.L., Dai, H.J., Hung, H.C., Sung, T.Y., and Hsu, W.L. (2006). NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition. BMC Bioinformatics 7 Suppl 5, S11.
65. Tsuruoka, Y., and Tsujii, J.i. (2005). Bidirectional inference with the easiest-first strategy for tagging sequence data. Paper presented at: Proceedings of the conference on human language technology and empirical methods in natural language processing (Association for Computational Linguistics).
66. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., et al. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623-627.
67. Ulrich, L.E., and Zhulin, I.B. (2010). The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 38, D401-407.
68. UniProt, C. (2013). Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41, D43-47.
69. Van Landeghem, S., Hakala, K., Ronnqvist, S., Salakoski, T., Van de Peer, Y., and Ginter, F. (2012). Exploring Biomolecular Literature with EVEX: Connecting Genes through Events, Homology, and Indirect Associations. Advances in bioinformatics 2012, 582765.
70. Wu, M., Li, X., Chua, H.N., Kwoh, C.K., and Ng, S.K. (2010). Integrating diverse biological and computational sources for reliable protein-protein interactions. BMC Bioinformatics 11 Suppl 7, S8.
71. Xiao, J., Su, J., Zhou, G.-d., and Tan, C. (2005). Protein-protein interaction extraction: a supervised learning approach. Paper presented at: Proc Symp on Semantic Mining in Biomedicine (Citeseer).
72. Yazdani, N., and Min, P.S. (2001). Prefix trees: New efficient data structures for matching strings of different lengths. Paper presented at: Database Engineering &; Applications, 2001 International Symposium on (IEEE).
73. Yu, H., and Gerstein, M. (2006). Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103, 14724-14731.
74. Zhang, S., Jin, G., Zhang, X.S., and Chen, L. (2007). Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 7, 2856-2869.
75. Zhou, J., and Rudd, K.E. (2013). EcoGene 3.0. Nucleic Acids Res 41, D613-624.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top