|
1. Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med, 1995. 1(1): p. 27-31. 2. Carmeliet, P. and R.K. Jain, Angiogenesis in cancer and other diseases. Nature, 2000. 407(6801): p. 249-57. 3. Tozer, G.M., C. Kanthou, and B.C. Baguley, Disrupting tumour blood vessels. Nat Rev Cancer, 2005. 5(6): p. 423-35. 4. Tang, D.G. and C.J. Conti, Endothelial cell development, vasculogenesis, angiogenesis, and tumor neovascularization: an update. Semin Thromb Hemost, 2004. 30(1): p. 109-17. 5. Patan, S., Vasculogenesis and angiogenesis. Cancer Treat Res, 2004. 117: p. 3-32. 6. Joyce, J.A. and J.W. Pollard, Microenvironmental regulation of metastasis. Nat Rev Cancer, 2009. 9(4): p. 239-52. 7. Reyes, M., A. Dudek, B. Jahagirdar, L. Koodie, P.H. Marker, and C.M. Verfaillie, Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002. 109(3): p. 337-46. 8. Hanahan, D. and J. Folkman, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 1996. 86(3): p. 353-64. 9. Bergers, G. and L.E. Benjamin, Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 2003. 3(6): p. 401-10. 10. Albini, A. and M.B. Sporn, The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer, 2007. 7(2): p. 139-47. 11. Kerbel, R.S., Tumor angiogenesis. N Engl J Med, 2008. 358(19): p. 2039-49. 12. Whiteside, T.L., The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008. 27(45): p. 5904-12. 13. De Palma, M., C. Murdoch, M.A. Venneri, L. Naldini, and C.E. Lewis, Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol, 2007. 28(12): p. 519-24. 14. De Palma, M., M.A. Venneri, C. Roca, and L. Naldini, Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med, 2003. 9(6): p. 789-95. 15. Li, B., E.E. Sharpe, A.B. Maupin, A.A. Teleron, A.L. Pyle, P. Carmeliet, and P.P. Young, VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J, 2006. 20(9): p. 1495-7. 16. Conejo-Garcia, J.R., R.J. Buckanovich, F. Benencia, M.C. Courreges, S.C. Rubin, R.G. Carroll, and G. Coukos, Vascular leukocytes contribute to tumor vascularization. Blood, 2005. 105(2): p. 679-81. 17. Hasegawa, S., G. Becker, H. Nagano, P. Libby, and R.N. Mitchell, Pattern of graft- and host-specific MHC class II expression in long-term murine cardiac allografts: origin of inflammatory and vascular wall cells. Am J Pathol, 1998. 153(1): p. 69-79. 18. Germain, R.N. and L.R. Hendrix, MHC class II structure, occupancy and surface expression determined by post-endoplasmic reticulum antigen binding. Nature, 1991. 353(6340): p. 134-9. 19. Hung, K., R. Hayashi, A. Lafond-Walker, C. Lowenstein, D. Pardoll, and H. Levitsky, The central role of CD4(+) T cells in the antitumor immune response. J Exp Med, 1998. 188(12): p. 2357-68. 20. Antony, P.A., C.A. Piccirillo, A. Akpinarli, S.E. Finkelstein, P.J. Speiss, D.R. Surman, D.C. Palmer, C.C. Chan, C.A. Klebanoff, W.W. Overwijk, S.A. Rosenberg, and N.P. Restifo, CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol, 2005. 174(5): p. 2591-601. 21. Fernandez-Cruz, E., B.A. Woda, and J.D. Feldman, Elimination of syngeneic sarcomas in rats by a subset of T lymphocytes. J Exp Med, 1980. 152(4): p. 823-41. 22. Wang, R.F., Enhancing antitumor immune responses: intracellular peptide delivery and identification of MHC class II-restricted tumor antigens. Immunol Rev, 2002. 188: p. 65-80. 23. Hock, H., M. Dorsch, T. Diamantstein, and T. Blankenstein, Interleukin 7 induces CD4+ T cell-dependent tumor rejection. J Exp Med, 1991. 174(6): p. 1291-8. 24. Wang, R.F., The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol, 2001. 22(5): p. 269-76. 25. Saff, R.R., E.S. Spanjaard, A.M. Hohlbaum, and A. Marshak-Rothstein, Activation-induced cell death limits effector function of CD4 tumor-specific T cells. J Immunol, 2004. 172(11): p. 6598-606. 26. Blankenstein, T., Z.H. Qin, K. Uberla, W. Muller, H. Rosen, H.D. Volk, and T. Diamantstein, Tumor suppression after tumor cell-targeted tumor necrosis factor alpha gene transfer. J Exp Med, 1991. 173(5): p. 1047-52. 27. Beatty, G. and Y. Paterson, IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. J Immunol, 2001. 166(4): p. 2276-82. 28. Qin, Z. and T. Blankenstein, CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity, 2000. 12(6): p. 677-86. 29. Dighe, A.S., E. Richards, L.J. Old, and R.D. Schreiber, Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN gamma receptors. Immunity, 1994. 1(6): p. 447-56. 30. Sgadari, C., A.L. Angiolillo, and G. Tosato, Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 1996. 87(9): p. 3877-82. 31. Arenberg, D.A., S.L. Kunkel, P.J. Polverini, S.B. Morris, M.D. Burdick, M.C. Glass, D.T. Taub, M.D. Iannettoni, R.I. Whyte, and R.M. Strieter, Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med, 1996. 184(3): p. 981-92. 32. Pathmanathan, R., U. Prasad, R. Sadler, K. Flynn, and N. Raab-Traub, Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med, 1995. 333(11): p. 693-8. 33. Fennewald, S., V. van Santen, and E. Kieff, Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. J Virol, 1984. 51(2): p. 411-9. 34. Huen, D.S., S.A. Henderson, D. Croom-Carter, and M. Rowe, The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene, 1995. 10(3): p. 549-60. 35. Kieser, A., E. Kilger, O. Gires, M. Ueffing, W. Kolch, and W. Hammerschmidt, Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J, 1997. 16(21): p. 6478-85. 36. Miller, W.E., R.H. Edwards, D.M. Walling, and N. Raab-Traub, Sequence variation in the Epstein-Barr virus latent membrane protein 1. J Gen Virol, 1994. 75 ( Pt 10): p. 2729-40. 37. Chen, M.L., C.N. Tsai, C.L. Liang, C.H. Shu, C.R. Huang, D. Sulitzeanu, S.T. Liu, and Y.S. Chang, Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein-Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene, 1992. 7(11): p. 2131-40. 38. Li, S.N., Y.S. Chang, and S.T. Liu, Effect of a 10-amino acid deletion on the oncogenic activity of latent membrane protein 1 of Epstein-Barr virus. Oncogene, 1996. 12(10): p. 2129-35. 39. Hu, L.F., F. Chen, X. Zheng, I. Ernberg, S.L. Cao, B. Christensson, G. Klein, and G. Winberg, Clonability and tumorigenicity of human epithelial cells expressing the EBV encoded membrane protein LMP1. Oncogene, 1993. 8(6): p. 1575-83. 40. Chow, K.P., C.C. Wu, H.Y. Chang, C. Chang, and Y.S. Chang, A simplified tumour model established via Epstein-Barr virus-encoded, nasopharyngeal carcinoma-derived oncogene latent membrane protein 1 in immunocompetent mice. Lab Anim, 2008. 42(2): p. 193-203. 41. Cao, Y., Tumor angiogenesis and molecular targets for therapy. Front Biosci, 2009. 14: p. 3962-73. 42. Sathy, B.N., Y.H. Chou, H.J. Li, C. Chang, and K.P. Chow, Dynamic contrast-enhanced and T2-weighted magnetic resonance imaging study of the correlation between tumour angiogenesis and growth kinetics. Lab Anim, 2009. 43(1): p. 53-9. 43. Kai-Ping N. Chow1, *, Lian-Chen Wang2,3,*, Chen Chang4, Ting-Yu Hsu1,2, Chun-Yen Lin5, Jian-Ming Chen2, Gou-Jin Feng2, Hao-Ping Liu6, Cheng-Han Yang2, Wei-Tzu Huang2, Chia-Chun Chen6, I-Che Chung6, Tzu-Chen Yen7, Shuen-Kuei Liao8,9, Yu-Sun Chang2,6 and Tzong-Shoon Wu2,10, CD4 T cell angiogenic blockade induced by the EBV oncogene N-LMP1. European Journal of Immunology submit. 44. 余姍妮, The MHC class II expression on Tie2-expressing monocyte (TEM) in an EBV-NLMP1 tumor model 長庚大學碩士論文, 2010. 45. Oransky, I., Sir Godfrey N. Hounsfield. Lancet, 2004. 364(9439): p. 1032. 46. Maehara, N., Experimental microcomputed tomography study of the 3D microangioarchitecture of tumors. Eur Radiol, 2003. 13(7): p. 1559-65. 47. Du, R., K.V. Lu, C. Petritsch, P. Liu, R. Ganss, E. Passegue, H. Song, S. Vandenberg, R.S. Johnson, Z. Werb, and G. Bergers, HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 2008. 13(3): p. 206-20. 48. Ikeda, H., L.J. Old, and R.D. Schreiber, The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev, 2002. 13(2): p. 95-109. 49. Murdoch, C., M. Muthana, S.B. Coffelt, and C.E. Lewis, The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer, 2008. 8(8): p. 618-31. 50. Smyth, S.S., E.D. Reis, H. Vaananen, W. Zhang, and B.S. Coller, Variable protection of beta 3-integrin--deficient mice from thrombosis initiated by different mechanisms. Blood, 2001. 98(4): p. 1055-62. 51. Conejo-Garcia, J.R., F. Benencia, M.C. Courreges, E. Kang, A. Mohamed-Hadley, R.J. Buckanovich, D.O. Holtz, A. Jenkins, H. Na, L. Zhang, D.S. Wagner, D. Katsaros, R. Caroll, and G. Coukos, Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med, 2004. 10(9): p. 950-8. 52. Kammertoens, T., T. Schuler, and T. Blankenstein, Immunotherapy: target the stroma to hit the tumor. Trends Mol Med, 2005. 11(5): p. 225-31. 53. Coukos, G., F. Benencia, R.J. Buckanovich, and J.R. Conejo-Garcia, The role of dendritic cell precursors in tumour vasculogenesis. Br J Cancer, 2005. 92(7): p. 1182-7. 54. Nakul-Aquaronne, D., J. Bayle, and C. Frelin, Coexpression of endothelial markers and CD14 by cytokine mobilized CD34+ cells under angiogenic stimulation. Cardiovasc Res, 2003. 57(3): p. 816-23. 55. DeNardo, D.G., P. Andreu, and L.M. Coussens, Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev, 2010. 29(2): p. 309-16. 56. Ruegg, C., Leukocytes, inflammation, and angiogenesis in cancer: fatal attractions. J Leukoc Biol, 2006. 80(4): p. 682-4. 57. Millauer, B., L.K. Shawver, K.H. Plate, W. Risau, and A. Ullrich, Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature, 1994. 367(6463): p. 576-9. 58. Ferrara, N., K. Carver-Moore, H. Chen, M. Dowd, L. Lu, K.S. O'Shea, L. Powell-Braxton, K.J. Hillan, and M.W. Moore, Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 1996. 380(6573): p. 439-42. 59. Li, Y., M.N. Wang, H. Li, K.D. King, R. Bassi, H. Sun, A. Santiago, A.T. Hooper, P. Bohlen, and D.J. Hicklin, Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J Exp Med, 2002. 195(12): p. 1575-84. 60. Yancopoulos, G.D., S. Davis, N.W. Gale, J.S. Rudge, S.J. Wiegand, and J. Holash, Vascular-specific growth factors and blood vessel formation. Nature, 2000. 407(6801): p. 242-8. 61. Stockmann, C., A. Doedens, A. Weidemann, N. Zhang, N. Takeda, J.I. Greenberg, D.A. Cheresh, and R.S. Johnson, Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature, 2008. 456(7223): p. 814-8.
|