跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李雅雄
研究生(外文):Ya-Hsiung Lee
論文名稱:筆記型電腦散熱系統之主動式熱沉最佳化設計
論文名稱(外文):Optimum Design Active Heat Sink of Cooling System on the Notebook Personal Computer
指導教授:曲新生曲新生引用關係
指導教授(外文):Hsin-Sen Chu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:76
中文關鍵詞:筆記型電腦散熱系統最佳化設計主動式熱沉
外文關鍵詞:cooling system of theoptimum designactive heat sink
相關次數:
  • 被引用被引用:6
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於CPU頻率上升及元件密集度提高,使得筆記型電腦內所產生的熱量愈來愈高,因此散熱問題是筆記型電腦內設計上的一大挑戰,而其中主動式熱沉是筆記型電腦內最重要的散熱元件,因此,基於散熱、成本及設計空間的考量下,主動式熱沈的最佳化設計是筆記型電腦的散熱系統設計中極重要的問題。
散熱片是主動式熱沈最重要的散熱元件。因此本研究主要在討論散熱片的最佳化設計。利用STAR-CD套裝軟體模擬平行板散熱片流場及熱傳的共軛問題,模擬結果顯示出不同片數條件下散熱片表面的局部、平均對流熱傳係數和根部至頂部溫度分布。
其次,基於散熱片體積、成本、散熱量之考量,以發熱量各別為13、17、21、25瓦的設計條件,來尋找不同熱傳性能要求之下最佳化設計,以達到降低CPU的溫度之要求,並做為設計筆記型電腦散熱系統之依據。
Recently, with the continuing increase of CPU’s frequency and system power dissipation in notebook personal computers, high performance thermal solutions such as heat pipe, heat sink, thermal spreader, and fans have witnessed an increasing number of applications in the notebook personal computers. Among them, active heat sinks are main elements in heat transfer system of a notebook PC. Therefore, based on the consideration of heat transfer, cost and space in notebook PC, the optimum design of active heat sinks is a very important subject.
The objective of this research is to study notebook personal computer CPU heat sinks by STAR-CD software. The numerical simulation is performed by considering a conjugate problem which solved both flow and heat transfer in air stream and heat conduction in the fins of heat sinks. Simulation results showed local, average heat transfer coefficients of the fin and distribute temperature from bottom to top of fin.
Secondly, based on the consideration of volume, cost, and dissipation of heat sinks, an optimum design, under various demands of heat—transferred amount of 13,17,21,25watts power of CPU individually, is explored by theoretical analysis to decrease the temperature generated from CPU. The results offered better references in designing heat transfer system in notebook PC.
中文摘要i
英文摘要ii
誌謝iv
目錄v
表目錄vii
圖目錄viii
符號說明xi
一、緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 冷卻系統2
1.2.2 散熱片2
1.2.3 熱管 3
1.3 對流熱傳係數4
1.3.1 通過平行板的邊界層流4
1.3.2 通過兩平行板層流5
1.4 研究內容 5
二、理論模式建立 17
2.1 基本假設 17
2.2 統御方程式 17
2.3 邊界條件 18
三、數值方法 22
3.1 SIMPLE演算法則22
3.2 上風差分法 26
3.3 收斂條件 27
四、數值模擬結果分析32
4.1 數值方法之驗証32
4.1.1 格點測試32
4.1.2 數值結果比較33
4.2 物理模型描述34
4.3 結果與討論 34
五、結論與建議 69
參考文獻 71
1. Technical document from Intel Corporation Inc, http://www.intel. com.tw/
2. Kobayashi, T., Ogushi, T., Sumi, N., and Fujii, M., “Thermal Design Ultra-Slim Notebook Computer,” Thermal and Thermo mechanical Phenomena in Electronic System, The Sixth Intersociety Conference, pp. 15-21, 1998.
3. Mochizuki, M., Saito, Y., Goto, K., Nguyen, T., Phong, H., Malcolm, M., and Marando, M. P., “Hinged Heat Pipes for Cooling Notebook PCs,” Semiconductor Thermal Measurement and Symposium, SEMI-THERM XIII. Thirteenth Annual IEEE, pp. 64-72, 1997.
4. Nguyen, T., Mochizuki, M., Mashiko, K., Saito, Y., Sauciuc, L., and Boggs, R., “Advanced Cooling System Using Miniature Heat Pipes in Mobile PC,” Thermal and Thermomechanical Phenomena in Electronic System, The Sixth Intersociety Conference, pp. 507-511, 1998
5. Xie, H., Aghazadeh, M., Lui, W., and Haley, K., “Thermal Solution to Pentium Processors in TCP in Notebook and Sub-Notebooks,” IEEE Transaction on Components and Packaging and Manufacturing Technology, Part A, Vol. 19, No. 1, pp. 201-210, 1996.
6. Xie, H., Aghazadeh, M., and Toth, J., “The Use of Heat Pipes In the Cooling of Portables with High Power Packages,” Electronic Components and Technology Conference, 1995. Proceeding, pp. 906-913, 1995.
7. Rujano, J. R., Cadenzas, R., Rahman, M. M., and Moreno, W. A., “Development of A Thermal Management Solution for A Ruggedized Pentium Based Notebook Computer,” Thermal and Thermomechanical Phenomena in Electronic System, The Sixth Intersociety Conference, pp. 8-14, 1998.
8. Namba, K., Kimura, N., Niekawa, Y., Kimura, Y., and Hashimoto, N., “Thermal Analysis of Notebook Personal Computer,” Electronic Manufacturing Technology Symposium, 1995, Proceedings of 1995 Japan International, 18th IEEE/CPMT International, pp. 456-459, 1996.
9. Lee, S., “Optimum design and selection of heat sinks,” IEEE Transaction on components, Packaging, and Manufacturing technology-Part A, pp. 812-817, 1995.
10. Bar-Cohen, A., and Jelinek, M., “Optimum arrays of longitudinal fins in convective heat transfer,” Heat Transfer Engineering, Vol. 6, pp. 68-78, 1985.
11. Bar-Cohen, A., “Fin thickness for an optimal natural convection array of rectangular fins,” ASME J. Heat Transfer, Vol.101, pp. 564-566, 1976.
12. Leung, C. W., and Probert, S. D., “Heat Exchanger Design: Optimal Thickness(under Natural Convective Conditions)of Vertical Rectangular Fins Protruding Upwards from a Horizontal Rectangular Base,” Applied Energy, No. 29, pp. 299-306, 1988.
13. Leung, C. W., and Probert, S. D., “Heat Exchanger Design:Optimal Length of an Array of Uniformly-Spaced Vertical Rectangular Fins Protruding Upwards from a Horizontal Base,” Applied Energy, No. 30, pp. 29-35, 1988.
14. Leung, C. W., and Probert, S. D., “Heat Exchanger Design: Optimal Uniform Thickness of Vertical Rectangular Fins Protruding Perpendicularly Outwards , at Uniform Separations , From a Vertical Rectangular, Base” Applied Energy, No. 26, pp. 111-118, 1987.
15. Leung, C. W., and Probert, S. D., “Heat transfers from shrouded rectangular-fin arrays,” Applied Energy 24, pp.77-81, 1985.
16. Yeh, R. h., and Chang, M., “Optimum Longitudinal Convective Fin Arrays,” International Communications in Heat and Mass Transfer, Vol. 22, No. 3, pp. 445-460,1995.
17. Biber, C. R., and Fijol, S., Fan-plus Heat sink “Optimization,” Mechanical and Thermal Design with Reality Proceedings of the International Systems Packaging Symposium , pp. 285-289, 1999.
18. Chen, Y. C., Li, C., “How to Make a Correct Assessment of Heat Sinks Performance,” pp. 277-285, 1995
19. Iwasaki, H., Ishizuka, M., “Forced Convection Air Cooling Characteristics of Plate Fins for Notebook Personal Computer,” IEEE International Society Conference on Thermal Phenomena, pp. 21-26, 2000.
20. Ken, T., Ishizuka, M., “Optimization of Parallel plate Heatsinks for Forced Convection,” IEEE International Society Conference on Thermal Phenomena, pp. 266-271, 2000.
21. Craig, K. J., and Kock, D, “Minimization of Heat Sink Mass Using CFD and Mathematical Optimization,” Journal of Electronic Packaging, Vol.21, pp. 143-147, 1999.
22. Madhusudan, I., and Bar-Cohen, A., “Least-Material Optimization of Vertical Pin-Fin, Plate-Fin and Triangular-Fin Heat Sinks in Natural Convective Heat Transfer,” IEEE International Society Conference on Thermal Phenomena, pp. 295-302, 1998.
23. Rujano, J. R., “Development of Thermal Management Solution for a Ruggedized Pentium Based Notebook Computer” IEEE International Society Conference on Thermal Phenomena, pp. 8-14, 1998.
24. Dunn, P. D., and Reay, D. A., Heat Pipes, 4th ed., Pergamon Press, New York, 1993.
25. Plesch, D., Bier, W., Seidel, D., and Schubert, K., “Miniature Heat Pipes for Heat Removal From Microelectronic Circuits,” Proc. ASME Annual Meeting, Atlanta, GA. 1991.
26. Hopkins, R., Faghri, A., and Khrustalev, D., “Flat Miniature Heat Pipes with Micro Capillary Grooves,” ASME J. Heat Transfer, Vol. 121, pp. 102-109,1999.
27. Schlichting, H., Boundary Layer Theory, McGraw-Hill Book Company, New York, NY, 6th ed, 1968.
28. Najafi, M., and Scott, R. R., “Average Heat-Transfer Coefficients for Laminar and Turbulent Flow over Partially Heated flat Plate,” Energy Conversion Engineering Conference, Proceedings. of the 31st.Intersociety, Vol. 3, pp. 1993-1996, 1996.
29. Sparrow, E. M., Baliga, B. R., and Patankar, S. V., “Forced Convection Heat Transfer from a Shrouded Fin Array with without Tip Clearance,” ASME J. Heat Transfer, Vol. 100, No. 4, pp. 572-579, 1978
30. Kraus, A. D. and Bar-Cohen, A., “Design and Analysis of Heat Sinks, John Wiley and Sons”, New York, 1995.
31. Iwasaki, H., Sasaki, T., and Ishizuka, M., “Cooling Performance of Plate Fins for Multi-chip Modules,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, No. 3, pp. 592-595, 1995.
32. Teertstra, P., and Yovanovich, M. M., and Culham, J. R., “Analytical Forced Convection Modeling of Plate Fin Heat Sinks ” IEEE SEMI —THERM Symposium, pp. 34-40, 1999.
33. Iwasaki, H., “Natural Convection Air Cooling Characteristics of Plate Fins in A Ventilated Electronic Cabinet” IEEE Inter Society Conference on Thermal Phenomena, pp. 124-129, 1998.
34. Patankar, S. V., and Spalding, D. B., “A calculation procedure heat, for heat, mass and momentum transfer in three-dimensional Heat parabolic flows,” Int. J. Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972
35. Patankar, S. V., “A calculation procedure for two-dimensional elliptic situations,” Number. Heat Transfer, Vol. 4, pp. 409-425 1981.
36. Doormal, J. P., and Rairhby, G. D., ”Enhancements of the SIMPLE method for predicting incompressible fluid flows,” Number. Heat Transfer, Vol. 7, pp. 147-163, 1984.
37. Spalding, D. B., “A novel finite-difference formulation for differential expressions involving both first and second derivatives,” Int. J. Number. Methods Eng., Vol. 4, pp. 551-559, 1972.
38. Knight. W., Goodling. S., “Optimum Thermal Design of Air Cooled Forced Convection Finned Heat Sinks Experimental” IEEE Transaction on Components, Hybrids, and Manufacturing Technology, Vol. 15, No. 5, pp. 754-760, 1992.
39. STAR-CD Version 3.0 Manual
40. Sant, J. H., “Temperature Variations on the Surface Strip Heated Flat Plate,” ASME J. Heat Transfer, Vol. 89, pp. 372-373,1967.
41. Frank, K., and Mark, S. B., Principles of Heat Transfer, West Publishing Company, 5th ed, 1993.
42. Leon M. R., and Herve, A., “Compact Air Cooled Heat Sinks for Power Packages,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part A, Vol. 20 No. 4, pp. 442-451, 1997
43. Mercer W.E., Pearce W. M., Hitchcock, J. E., “Laminar Forced Convection in the Entrance Region Between parallel Flat Plates,” ASME J. Heat Transfer, pp. 251-257, 1967
44. Kern, D. Q., and Kraus A. D., Extended Surface Heat Transfer, McGraw-Hill, New York, 1972.
45. Viswanath, R., and Ali, I. A., “Thermal Modeling of High Performance Packages in Portable Computers,” Electronic Components and Technology Conference, 1995. Proceedings. 45th, pp. 1122-1133, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top