跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/19 16:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃淑玲
研究生(外文):Shu-Ling Huang
論文名稱:稻米14-16 kDa過敏蛋白之基因選殖與重組蛋白表現及過敏蛋白之純化、特性分析與檢測
論文名稱(外文):Cloning, Recombinant Protein Expression of Rice 14-16 kDa Allergens and Purification, Characterization and Detection of Allergenic Proteins
指導教授:黃文哲黃文哲引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:127
中文關鍵詞:14-16 kDa 米過敏蛋白基因選殖重組蛋白蛋白質純化西方轉漬法酵素聯結免疫分析過敏蛋白檢測
外文關鍵詞:14-16 kDa rice allergensgene cloningrecombinant proteinprotein purificationWestern blottingELISAallergen detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

在亞洲地區米在主食能量提供上佔非常重要角色。米中14-16 kDa過敏蛋白屬於鹽溶性蛋白部分,彼此蛋白質屬於同源性基因產物具有相似性構造
,對人類唾液中α-澱粉酶有抑制作用。其胺基酸序列與小麥α-澱粉酶抑制劑、大麥胰蛋白酶抑制劑及篦麻子之貯藏蛋白具相似性。目前已證實這些蛋白質是造成穀類過敏病人之主要過敏蛋白。研究顯示:米中14-16、26、33及56 kDa蛋白質會與米過敏病人體內IgE產生過敏反應,其中14-16 kDa蛋白質會與90-95% 米過敏病人的IgE產生反應。因此,14-16 kDa米過敏蛋白被認為是米中的主要過敏蛋白質。目前因環境污染及飲食問題造成更多過敏體質病人,顯示探討過敏蛋白對人類生活之影響是一重要研究課題。

關於食物過敏原之檢測工具,所需要的是針對過敏原所發展出的專一性抗體,鑑於米14-16 kDa過敏蛋白之專一性抗體取得不易,故本論文目的在以分子轉殖技術將米之14-16 kDa過敏蛋白基因擴增轉殖於表現載體,利用大腸桿菌表現宿主表現目標蛋白質,進而純化將之製備成專一性抗體。利用此抗體做為檢測米中14-16 kDa過敏蛋白之工具。

本研究第一部分是利用逆轉錄聚合酶連鎖反應由米中mRNA擴增出米過敏蛋白基因- RA17之cDNA,並構築成pET-29a(+)-RA17表現載體,利用Escherichia coli BL21表現宿主得到RA17重組過敏蛋白,以此蛋白質製備多株抗體做為檢測植酸酶轉基因米與母本米(台農67號)中14-16 kDa主要過敏蛋白含量之工具。由西方轉漬法測得的結果顯示,植酸酶轉基因米所含的主要過敏蛋白之含量為母本米之96.3%;酵素免疫分析法分析結果,14-16 kDa主要過敏蛋白含量在植酸酶轉基因米為1.66 mg/g ± 0.08 mg/g、母本米為1.73 ± 0.09 mg/g。顯示植酸酶轉基因米中主要過敏蛋白,並不會因外來植酸酶基因而造成其過敏蛋白含量的增加。

本研究第二部分目的在分離純化稻米中14-16 kDa 過敏蛋白,利用純化之過敏蛋白做進一步特性分析。首先,利用1M NaCl溶液萃取鹽溶性蛋白後,利用硫酸銨沉澱法、DEAE-Sepharose 離子交換層析管柱得到四個主要波峰(Ⅰ、Ⅱ、Ⅲ、Ⅳ)。經由SDS-PAGE電泳及免疫轉漬法分析將得到14-16 kDa明顯條帶之波峰部分(Ⅳ),再以分子篩Sephadex G-50凝膠過濾層析管柱做進一步分離純化,得到四個主要波峰部分,經電泳及免疫轉漬確認得到分子量在14-16 kDa目標蛋白;經LC-MS-MS質譜鑑定證實:分子篩層析得到之主要目標蛋白分別為米過敏蛋白RA14/RA14B (FDEAE-Peak I)、RA14C/RAG2 (FDEAE-Peak II)、 similar to RA17 precursor (FDEAE-Peak III ) 、RA14/RA14B (FDEAE-Peak IV)。將此四個主要波峰蛋白做模擬胃液反應,發現RA14/RA14B、RA14C/RAG2在5分鐘後即消化完全;但similar to RA17 precursor經反應60分鐘後仍穩定存在。在模擬腸液反應中RA14/RA14B、RA14C/RAG2與 similar to RA17 precursor經反應60分鐘後仍穩定存在,不受腸液酵素所分解。在100 °C耐熱試驗,發現RA14/ RA14B、RA14C/RAG2與similar to RA17 precursor 加熱60分鐘後經免疫轉漬分析均可測得目標蛋白存在,顯示米過敏蛋白RA14/RA14B、RA14C/RAG2與 similar to RA17 precursor對熱安定。

本研究第三部分是利用本實驗製備的米過敏原抗體及純化得到的過敏蛋白做標準品,用於檢測市售米及糯米中14-16 kDa米過敏蛋白之含量。發現九種市售米中其含量分別為2.36 ± 0.12 mg/g (台稉2號)、2.16 ± 0.13 mg/g (台稉4號)、1.91 ± 0.11 mg/g (台稉9號)、2.26 ± 0.10 mg/g (桃園3號)、2.61 ± 0.07 mg/g (台南11號)、1.81 ± 0.11 mg/g (高雄139號)、2.26 ± 0.09 mg/g (高雄145號)、2.12 ± 0.10 mg/g (台秈22號)、1.95 ± 0.09 mg/g (進口泰國秈米) ,1.69 ± 0.08 mg/g (溪湖長糯米)、1.67 ± 0.12 mg/g (新化長糯米)、1.73 ± 0.11 mg/g (溪湖圓糯米)與1.80 ± 0.10 mg/g (西螺圓糯米)。在檢測的稉米及秈米中14-16 kDa過敏蛋白含量以台南11 號米最高、高雄139 號米含量最低,泰國秈米之含量與台稉9 號米相近。而在4種糯米中其含量彼此間無顯著差異。結果顯示:分析的國產米中14-16 kDa過敏蛋白含量的不同與產地無相關性,且稉米及秈米中14-16 kDa過敏蛋白含量在有些品種中會有差異。經模擬胃液試驗發現:檢測的米樣品中14-16 kDa過敏蛋白在2分鐘後即可被胃蛋白酶完全消化分解,且分解後之小分子蛋白即不再具有抗原特性。


Rice is the staple food in Asia, it plays an important role in providing energy to general population within the region. Rice 14-16 kDa allergenic proteins, a salt-soluble protein fraction, were the products of homologous genes with similar structures. The 14-16 kDa allergenic proteins have been reported as human salivary α-amylase inhibitor, barley trypsin inhibitor and storage protein of grate asako. It was demonstrated that these proteins were the major allergens which caused allergic reactions with consumption of cereals. It was reported that the 14-16, 26, 33 and 56 kDa proteins in rice could react with IgE of rice allergic patients in which the 14-16 kDa proteins, especially, were found to be recognized by IgE antibodies from 90-95% of rice allergic patients. Therefore, 14-16 kDa allergens are thought to be the main allergy proteins in rice. Environmental pollution and dietary factors on human allergenicity has drawn much attention lately. More information in this regard is needed.

To develop an allergen-specific antibody is the first step for food allergen detection. It is difficult to obtain the specific antibodies against rice 14-16 kDa allergens. The objectives of this study were to utilize the molecular transgenic technology to amplify rice 14-16 kDa allergen genes and transfer the genes into the expression vector followed by expressing the target recombinant protein in Escherichia coli expression host, to purify target recombinant protein, and to study the use of purified protein on detection of rice 14-16 kDa allergens.
pET-29a(+)-RA17 Expression vector of rice was constructed by using the RT-PCR method to amplify the cDNA of RA17 (one of rice 14-16 kDa allergens) from rice mRNA. Recombinant RA17 (rRA17) was expressed in Escherichia coli expression host as a histidine-tag fusion protein and was purified to its homogeneity. The polyclonal antibody was then prepared from the rRA17 protein to be further used as a tool to analyze the content of 14-16 kDa allergens in phytase-transgenic rice (GR) and non-transgenic rice (NR) (wild-type, Oryza sative L. cv. Tainung 67). Result of western blotting showed that the content of major allergenic proteins in GR was 96.3% of that in NR, which were 1.66 ± 0.08 mg/g and 1.73 ± 0.09 mg/g for GR and NR, respectively. It appeared that transferring phytase gene into rice plant did not affect the content of rice major allergenic proteins significantly.

The 14-16 kDa allergens of rice was purified and was further analyzed and characterized. Salt-souble proteins of rice were first extracted with 1M NaCl solution followed by precipitation with 90% saturated ammonium sulfate solution. The precipitate was dialyzed and then subjected to DEAE-Sephadex ion-exchange chromatography. Four fractions (I-IV) were obtained. Each fraction was further purified by Sephadex G-50 gel-filtration. The purified fractions were identified as RA14/RA14B (FDEAE-Peak I), RA14C/RAG2 (FDEAE-Peak II), similar to RA17 precursor (FDEAE-Peak III ) and RA14/RA14B (FDEAE-Peak IV) by LC-MS-MS analysis. In a simulated gastric fluid (SGF) test, both RA14/RA14B and RA14C/RAG2 were fully digested in 5 min whereas similar to RA17 precursor was stable up to 60 min. In contrast, both RA14/RA14B and RA14C/RAG2 were relatively stable when subjected to a simulated intestinal fluid (SIF) test. Besides, RA14/RA14B, RA14C/RAG2 and similar to RA17 precursor remained to be stable when heated at 100°C for 60 min.

Contents of 14-16 kDa allergens in 9 studied rice samples were as follows: 2.36 ± 0.12 mg/g (Oryza sative L. cv. Taikeng 2), 2.16 ± 0.13 mg/g (Oryza sative L. cv. Taikeng 4), 1.91 ± 0.11 mg/g (Oryza sative L. cv. Taikeng 9), 2.26 ± 0.10 mg/g (Oryza sative L. cv. Taoyuan 3), 2.61 ± 0.07 mg/g (Oryza sative L. cv. Tainan 11), 1.81 ± 0.11 mg/g (Oryza sative L. cv. Kaohsiung 139), 2.26 ± 0.09 mg/g (Oryza sative L. cv. Kaohsiung 145), 2.12 ± 0.10 mg/g (Oryza sative L. cv. Taisen 22), 1.95 ± 0.09 mg/g (Imported Thailand Indica rice), 1.69 ± 0.08 mg/g (Sihu long waxy rice), 1.67 ± 0.12 mg/g (Xinhua long waxy rice), 1.73 ± 0.11 mg/g (Sihu round waxy rice) and 1.80 ± 0.10 mg/g (Siluo round waxy rice). Data indicated that there was no correlation between contents of 14-16 kDa allergens and growing areas of rices. Furthermore, the 14-16 kDa allergen contents were different in some japonica and indica rice strains. In SGF test, the 14-16 kDa allergens in tested rices could be completely digested in 2 min, and all fragments after SGF digesting showed no allergic activity when subjected to Western blotting.


頁 次

頁次 i
圖次 v
表次 ix
中文摘要 x
英文摘要 xii
第一章、文獻整理 1
一、食物過敏 1
二、食物過敏盛行率 1
三、食物過敏症的機轉 2
四、食物過敏之臨床表現 2
(一)、腸胃道食物過敏反應 2
(二)、皮膚食物過敏反應 3
(三)、呼吸道過敏反應 3
五、食物過敏原的特性及種類 4
六、稻米種類、特性及組成 5
(一)、稻米種類 5
(二)、稻米之特性 5
(三)、稻米之組成 6
七、米過敏原 6
八、轉基因食物之過敏性 7
九、轉基因食物之過敏性評估方法 7
(一)、序列同源性比對 8
(二)、消化穩定性試驗 8
十、偵測食品過敏原之方法 9
十一、加工處理對穀類過敏原之影響 10
(一)、加工處理對麥類過敏原之影響 10
(二)、加工處理對米類過敏原之影響 11
十二、消化對穀類過敏原之影響 11
(一)、消化對麥類過敏原之影響 11
(二)、消化對米類過敏原之影響 12
十三、重組過敏蛋白 12
(一)、重組過敏蛋白製備方法 12
1.原核生物表現系統 12
2.真核生物表現系統 13
(二)、重組過敏蛋白之研究與應用 14
十四、質譜分析與蛋白質鑑定 15
論文章節 30
實驗動機與目的 31
第二章、稻米14-16 kDa 過敏蛋白之基因選殖與重組蛋白之表現 33
壹、實驗設計 34
貳、材料與方法 35
一、實驗材料 35
(一)、儀器設備 35
(二)、軟體 35
(三)、藥品 36
(四)、菌株 37
(五)、質體 37
(六)、稻米材料 37
二、米14-16 kDa 過敏蛋白cDNA的製備 37
(一)、稻米Total RNA 之製備 37
(二)、米14-16 kDa 過敏蛋白第一股cDNA之合成 38
(三)、RT-PCR擴增RA17 DNA片段 38
三、純化PCR 產物 RA17 DNA 39
四、pGEM-T Easy Vector之接合反應 39
五、載體DNA之轉形 40
(一)、勝任細胞之製備 40
(二)、大腸桿菌之電轉形作用 40
(三)、轉形基因庫之篩選(藍白篩選) 40
六、大腸桿菌微量質體DNA之抽取 41
七、DNA之剪切、回收及黏合 41
(一)、DNA之剪切 41
(二)、DNA之剪切後之回收 41
(三)、DNA經限制酶剪切後之黏合 42
八、目標基因在大腸桿菌中之表現 42
(一)、表現載體pET29a-RA17之構築 42
(二)、大腸桿菌來源重組蛋白之誘生 42
(三)、大腸桿菌來源重組蛋白表現方式之偵測 42
九、Ni2+-NTA金屬螯合樹脂管柱純化重組蛋白 43
十、重組蛋白抗體之製備 44
十一、蛋白質濃度測定 44
十二、SDS-PAGE 蛋白質電泳分析 44
十三、西方轉漬分析 44
十四、酵素聯結免疫分析 45
十五、米鹽溶性蛋白之萃取 45
參、結果與討論 46
一、非轉基因與植酸酶轉基因米Total RNA 抽取方法之建立 46
二、米Total RNA 經RT-PCR反應逆轉錄成 cDNA 46
三、篩選轉基因米及非轉基因米中過敏蛋白cDNA之TA cloning 轉
形菌株 47
四、構築過敏蛋白RA17表現載體 47
五、RA17重組蛋白在表現宿主E. coli BL21之表現 47
六、大腸桿菌中R A17重組蛋白之分離與純化 48
七、重組過敏蛋白RA17抗體之製備 48
八、非轉基因米與轉植酸酶基因米之14-16 kDa 過敏蛋白之檢測 48
肆、結論 50
第三章、稻米14-16 kDa 過敏蛋白之純化與特性分析 67
壹、實驗設計 68
貳、材料與方法 69
一、實驗材料 69
(一)、儀器設備 69
(二)、藥品 69
(三)、稻米材料 70
二、米鹽溶性蛋白質萃取 70
三、硫酸銨沉澱 70
四、DEAE離子交換樹脂管柱層析 71
五、分子篩膠體過濾層析 71
六、蛋白質質譜鑑定 71
七、蛋白質濃度定量 72
八、Tricine SDS-PAGE蛋白質電泳 72
九、西方轉漬分析 72
十 、模擬胃液消化試驗 72
十一、模擬腸液消化試驗 72
十二、100oC熱穩定性試驗 73
參、結果與討論 74
一、米14-16 kDa過敏蛋白之純化 74
二、14-16 kDa過敏蛋白純化後之鑑定 75
三、過敏蛋白之模擬胃液消化試驗 77
四、過敏蛋白之模擬腸液消化試驗 77
五、過敏蛋白在100 oC下熱穩定性試驗 78
肆、結 論 79
第四章、不同品種米中14-16 kDa過敏蛋白之檢測 99
壹、實驗設計 100
貳、材料與方法 101
一、實驗米樣品 101
二、米鹽溶性蛋白質之萃取 101
三、蛋白質濃度定量 101
四、Tricine SDS-PAGE蛋白質電泳 101
五、西方轉漬分析 101
六、模擬胃液消化試驗 101
參、結果與討論 102
一、市售米之鹽溶性蛋白含量 102
二、市售米中14-16 kDa 過敏蛋白之偵測 102
三、市售米中14-16 kDa 過敏蛋白含量之檢測 102
四、市售米中14-16 kDa 過敏蛋白之模擬胃液消化試驗 103
肆、結論 105
第五章、參考文獻 118


李美芳。2005。乳膠-水果症候群之印度棗交叉性過敏原分子特性的研究。東海大學生命科學系博士論文。
林世朋。2007。台灣常見食物過敏原普查報告。台灣兒童過敏氣喘及免疫學會學會通訊。8: 12-14。
周綠蘋。2005。蛋白質體學之臨床與生物醫學之應用。臺灣醫學。9: 628-636。
洪梅珠、楊嘉凌、許志聖及劉瑋婷。1999。稻米蛋白質含量之變異。臺中區農業改良場研究彙報。65: 1-11。
洪梅珠、簡佩如及盧虎生。2000。米飯食味特性與白米醇溶性及鹼溶性蛋白質間相關之研究。臺中區農業改良場研究彙報。67: 1-10。
洪鈺雯。2006。過敏動物模式之建立與稻米14-16 kDa過敏蛋白之研究。朝陽科技大學生物技術研究所碩士論文。
張裕旺、陳淑華及陳玉如。2005。質譜技術於臨床蛋白質體學的應用。臺灣醫學。9: 637-649。
王蒙、張汆、贾小丽及孙艳辉。2008。食物中常见过敏原及其过敏特性。中国食物与营养。11: 62-64。
張菊芬、鄭穆良、黃文雄及王理剛。2007。食物過敏。台灣兒童過敏氣喘及免疫學會學會通訊。8: 15-18。
謝嘉成及呂克桓。2001。食物過敏。台灣兒童過敏氣喘及免疫學會學會通訊。2: 6-12。
陳五常。2001。食物過敏─ 臨床表現、診斷與治療。臺兒醫誌。42:36-41。
行政院農業委員會-稻米品質資訊(http://agrapp.coa.gov.tw/RICE/word/word.htm)。
CNS中華民國國家標準總號13446類號N1126「稻米詞彙」。
長戶一雄、江幡守衛及石川雅士。1972。米粒の蛋白質含量に關する研究。日作記。472-497。
謝伯東、蔡錫舜、陳信濤及花翠紅。1975。臺灣產食米中各種氨基酸之分佈之研究。中國農業化學會誌。12: 73-80。
侯福分、洪梅珠及宋勳。1988。土壤質地對稻米品質之影響。臺中區農業改良場研究彙報。19: 55-63。
蔡三福、張敬宜、黃振聲及王順成。2003。基因改造產品的毒性與過敏性之安全評估。行政院農業委員會農藥毒物試驗所技術專刊。134: 1-13。
Aalberse, R. C. 2000. Structural biology of allergens. J. Allergy Clin. Immunol. 106: 228-238.
A handbook for high-level expression and purification of 6xHis-tagged proteins. The QIAexpressionistTM. 2003. QIAGEN Fifth Edition, pp. 74-100. .
Arslan, L. G. 2007. Gastrointestinal food hypersensitivity: symptoms, diagnosis and provocation tests. Turk. J. Gastroenterol. 18: 5-13.
Astwood, J. D., Leach, J. N., Fuchs, R. L. 1996. Stability of food allergens to digestion in vitro. Nat. Biotechnol. 14: 1269-1273.
Atherton, K. T. 2002. Safety assessment of genetically modified crops. Toxicology. 181-182: 421-426.
Babiker, E. E., Azakami, H., Ogawa, T. and Kato, A. 2000. Immunological characterization of recombinant soy protein allergen produced by Escherichia coli expression system. J. Agric. Food Chem. 48: 571-575.
Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421.
Burks, A. W., Cockrell, G., Stanley, J. S., Helm, R. M. and Bannon, G. A. 1995. Recombinant peanut allergen Ara h I expression and IgE binding in patients with peanut hypersensitivity. J. Clin. Invest. 96: 1715-1721.
Cregg, J. M., Cereghino, J. L., Shi, J. and Higgins, D. R. 2000. Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16: 23-52.
Curioni, A. 1999. Urticaria from beer: an immediate hypersensitivity reaction due to a 10-kDa protein derived from barley. Clin. Exp. Allergy 29: 407-413.
Ehlert, A., Demmel, A., Hupfer, C., Busch, U. and Engel, K. H. 2009. Simultaneous detection of DNA from 10 food allergens by ligation-dependent probe amplification. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 26: 409-418.
E.F.S.A. GMO Panel. 2008. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem. Toxicol. 46: S2-70.
Esposito, D. and Chatterjee, D. K. 2006. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol. 17: 353-358.
Eva, U., Erika, J.-J. 2006. Mechanisms of type I food allergy. Phamacology & Therapeutics 112: 787-798.
FAO/WHO. 2001. Evaluation of allergenicity of genetically modified foods. Report of a joint FAO/WHO expert consultation on foods derived from biotechnology. Rome, Italy. 29pp.
Fiocchi, A., Bouygue, G. R., Restani, P., Gaiaschi, A., Terracciano, L. and Martelli, A. 2003. Anaphylaxis to rice by inhalation. J. Allergy Clin. Immunol. 111: 193-195.
Fu, T. J., Abbott, U. R. and Hatzos, C. 2002. Digestibility of food Allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluids - a comparative study. J. Agric. Food Chem. 50: 7154-7160.
Fuller, H. R., Goodwin, P. R. and Morris, G. E. 2006. An enzyme-linked immuno sorbent assay (ELISA) for the major crustacean allergen, tropomyosin, in food. Food Agric. Immunol. 17: 43-52.
Gao, J. W., Liu, J. Z., Li, B. and Li, Z. S. 2001. Isolation and purification of functional total RNA from blue-grained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Mol. Biol. Rep. 19: 185a-185i.
Gomez, L., Martin, E., Hernandez, D., Sanchez-Monge, R., Barber, D., Pozo, V., Andres, B., Armentia, A., Lahoz, C., Salcedo, G. and Palomino, P. 1990. Members of the alpha-amylase inhibitors family from wheat endosperm are major allergens associated with baker''s asthma. FEBS Lett. 261: 85-88.
Gray, H. C., Foy, T. M. and Becker, B. A. 2004. Knutsen AP: Rice-induced enterocolitis in an infant: TH1/TH2 cellular hypersensitivity and absent IgE reactivity. Ann. Allergy Asthma Immunol. 93: 601-605.
Guo, Y. C., Li, Z. X. and Lin, H. 2009. The effect of simulated gastrointestinal digestion on shrimp Penaeus vannamei allergenicity. Chin. J. Oceanol. Limno. 27: 703-707.
Hileman, R. E., Silvanovich, A. Goodman, R. E. Rice, E. A., Holleschak, G., Astwood, J. D. and Hefle, S. L. 2002. Bioinformatic methods for allergenicity assessment using a comprehensive allergen database. Int. Arch. Allergy Immunol. 128: 280-291.
Hoffmann-Sommergruber, K. and Mills, E. N. 2009. Food allergen protein families and their structural characteristics and application in component-resolved diagnosis: new data from the EuroPrevall project. Anal. Bioanal. Chem. 395: 25-35.
Hoffman, D. R. 1975.The specificities of human IgE antibodies combining with cereal grains. Immunochemistry 12: 535-538.
Ikezawa, Z., Miyakawa, K., Komatsu, H., Suga, C., Miyakawa, A., Sugiyama, A., Sasaki, T., Nakajima, H., Hirai, Y. and Suzui, Y. 1992. A probable involvement of rice allergy in severe type of atopic dermatitis in Japan. Acta. Derm. Venereol. Suppl. 176: 103-107.
Ito, M., Kato, T.and Matsuda, T. 2005. Rice allergenic proteins, 14-16 kDa albumin and alpha-globulin, remain insoluble in rice grains recovered from rice miso (rice-containing fermented soybean paste). Biosci. Biotechnol. Biochem. 69: 1137-1144.
Ivanciuc, O., Garcia, T., Torres, M., Schein, C. H. and Braun, W. 2009. Characteristic motifs for families of allergenic proteins. Mol. Immunol. 46: 559-568.
Izumi, H., Sugiyama, M., Matsuda, T. and Nakamura, R. 1999. Structural characterization of the 16-kDa allergen, RA17, in rice seeds. Prediction of the secondary structure and identification of intramolecular disulfide bridges. Biosci. Biotechnol. Biochem. 63: 2059-2063.
Izumi, H., Kondo, S., Kashio, H., Matsuda, T. and Nakamura, R. 2000. Decrease in rice allergenic proteins of polished rice grains by incubating with a miso solution. Biosci. Biotechnol. Biochem. 64: 2250-2253.
Izumi, H., Adachi, T., Fujii, N., Matsuda, T., Nakamura, R., Tanaka, K., Urisu, A. and Kurosawa, Y. 1992. Nucleotide sequence of a cDNA clone encoding a major allergenic protein in rice seeds. Homology of the deduced amino acid sequence with members of alpha-amylase/trypsin inhibitor family. FEBS Lett. 302: 213-216.
James, J. M., Sixbey, J. P., Helm, R. M., Bannon, G. A. and Burks, A. W. 1997. Wheat α-amylase inhibitor: A second route of allergic sensitization. J. Allergy Clin. Immunol. 99: 239-244.
Jones, S. M., Magnolfi, C. F., Cooke, S. K. and Sampson, H. A. 1995. Immunologic cross-reactivity among cereal grains and grasses in children with food hypersensitivity. J. Allergy Clin. Immunol. 96: 341-351.
Katherrine, M. J. 2005. Food Allergens-The "Other" Food Safety Issue. Dairy Foods 106: 46-49.
Kato, T., Katayama, E., Matsubara, S., Omi, Y. and Matsuda, T. 2000. Release of allergenic proteins from rice grains induced by high hydrostatic pressure. J. Agric. Food Chem. 48: 3124-3129.
Kimber, I. and Dearman, R. J. 2001. Food allergy: what are the issues? Toxicol Lett. 120: 165-170.
Kimber, I. and Dearman, R. J. 2002. Factors affecting the development of food allergy. Proc. Nutr. Soc. 61:.435-439.
Kobayashi, M., Hashimoto, Y., Taniuchi, S. and Tanabe, S. 2004. Degradation of wheat allergen in Japanese soy sauce. Int. J. Mol. Med. 13: 821-827.
Kraft, D., Ferreira, F., Ebner, C., Valenta, R., Breiteneder, H., Susani, M., Breitenbach, M. and Scheiner, O.1998. Recombinant allergens: the future of the diagnosis and treatment of atopic allergy. Allergy 53: 62-66.
Ladics, G. S., Selgrade, M. K. 2009. Identifying food proteins with allergenic potential: evolution of approaches to safety assessment and research to provide additional tools. Regul. Toxicol. Pharmacol. 54: S2-6.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Laura, E. M.-K., Takaiwa, F., Goto, F., Yoshihara, T., Theil, E. C. and Beard, J. L. 2002. Transgenic rice is a source of iron for iron-depleted rats. J. Nutr. 132: 957-960.
Lee, M. F., Hwang, G. Y., Chen, Y. H., Lin, H. C. and Wu, C. H. 2006. Molecular cloning of Indian jujube (Zizyphus mauritiana) allergen Ziz m 1 with sequence similarity to plant class III chitinases. Mol. Immunol. 43: 1144-1151.
Lehmann, K., Hoffmann, S., Neudecker, P., Suhr, M., Becker, W. M. and Rosch, P. 2003. High-yield expression in Escherichia coli, purification, and characterization of properly folded major peanut allergen Ara h 2. Protein Expr. Purif. 31: 250-259.
Lezaun, A., Igea, J. M., Quirce, S., Cuevas, M., Parra, F., Alonso, M. D., Martin, J. A. and Cano, M. S. 1994. Asthma and contact urticaria caused by rice in a housewife. Allergy 49: 92-95.
Limas, G. G., Salinas, M., Moneo, I., Fischer, S., Wittmann-Liebold, B. and Mendez, E. 1990. Purification and characterization of ten new rice NaCl-soluble proteins: identification of four protein-synthesis inhibitors and two immunoglobulin-binding proteins. Planta 181: 1-9.
Lucca, P., Hurrell, R. and Potrykus, I. 2001. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl. Genet. 102: 392-397.
Matsuda, T., Nomura, R., Sugiyama, M. and Nakamura, R. 1991. Immunochemical studies on rice allergenic proteins. Agric. Biol. Chem. 55: 509-513.
Matsuda, T,, Sugiyama, M,, Nakamura, R. and Torii, S. 1988. Purification and properties of an allergenic protein in rice grain. Agric. Biol. Chem. 52: 1465-1470.
Mills, E. N. C., Madsen, C., Shewry, P. R. and Wichers, H. J. 2003. Food allergens of plant origin─their molecular and evolutionary relationships. Trends in Food Sci. & Technol. 14: 145-156.
Monaci, L. and Visconti, A. 2010. Immunochemical and DNA-based methods in food allergen analysis and quality assurance perspectives. Trends in Food Sci. & Technol. 21: 272-283.
Nakase, M., Adachi, T., Urisu, A., Miyashita, T., Alvarez, A. M., Nagasaka, S., Aoki, N., Nakamura, R. and Matsuda, T. 1996. Rice (Oryzae sativa L.) α-amylase inhibitors of 14-16 kDa are potential allergens and products of a multigene family. J. Agric. Food Chem. 44: 2642-2628.
Nakamura, R. and Matsuda, T. 1996. Rice allergenic protein and molecular-genetic approach for hypoallergenic rice. Biosci. Biotechnol. Biochem. 60: 1215-1221.
Neise, U. and Sennekamp, J. 1996. A rare food allergen? Allergologie. 19:135-138.
Rabjohn, P., Helm, E. M., Stanley, J. S., West, C. M., Sampson, H. A., Burks, A. W. and Bannon, G. A. 1999. Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J. Clin Invest. 103:.535-542.
Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., Wright, S. Y., Hinchliffe, E., Adams, J. L., Silverstone, A.L. and Drake, R. 2005. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnol. 23: 482-487.
Patriarca, G., Schiavino, D., Pecora, V., Lombardo, C., Pollastrini, E., Aruanno, A., Sabato, V., Colagiovanni, A., Rizzi, A., De Pasquale, T., Roncallo, C., Decinti, M., Musumeci, S., Gasbarrini, G., Buonomo, A. and Nucera, E. 2009. Food allergy and food intolerance: diagnosis and treatment. Intern. Emerg. Med. 4: 11-24.
Saikusa, T., Horino, T. and Mori, Y. 1994. Distribution of free amino acids in the rice kernel and kernel fractions and the effect of water soaking on the distribution. J. Agric. Food Chem. 42: 1122-1125.
Sampson, H. A. 1999. Food allergy. Part 1: immunopathogenesis and clinical disorders. J. Allergy Clin. Immunol. 103: 717-728.
Sampson, H. A. 1999. Food allergy. Part 2: diagnosis and management. J Allergy Clin Immunol 103: 981-989.
Sampson, H. A. 2004. Update on food allergy. J. Allergy Clin. Immunol. 113: 805-819.
Sathe, S. K. and Sharma, G. M. 2009. Effects of food processing on food allergens. Mol. Nutr. Food Res. 53: 970-978.
Shek, L.P. and Lee, B. 2006. W. Food allergy in Asia. Curr. Opin. Allergy Clin. Immunol. 6: 197-201.
Shibasaki, M., Suzuki, S., Nemoto, H. and Kuroume, T. 1979. Allergenicity and lymphocyte- stimulating property of rice protein. J. Allergy Clin. Immunol. 64: 259-265.
Shim, S.-Y., Katakura, Y., Ichikawa, A., Teruya, K., Matsuda, T. and Shirahata, S. 2001. Epitope analysis of human monoclonal antibody specific for rice allergenic protein generated by in vitro immunization. Cytotechnol. 36: 109-115.
Sicherer, S. H., Eigenmann, P. A. and Sampson, H. A. 1998. Clinical features of food protein-induced enterocolitis syndrome. J. Pediatr. 133: 214-219.
Simonato, B., Pasini, G., Giannattasio, M., Peruffo, A. D., De Lazzari, F. and Curioni, A. 2001. Food allergy to wheat products: the effect of bread baking and in vitro digestion on wheat allergenic proteins. A study with bread dough, crumb, and crust. J. Agric. Food Chem. 49: 5668-5673.
Soldatova, L. N., Crameri, R., Gmachl, M., Kemeny, D. M., Schmidt, M., Weber, M. and Mueller, U. R. 1998. Superior biologic activity of the recombinant bee venom allergen hyaluronidase expressed in baculovirus-infected insect cells as compared with Escherichia coli. J. Allergy Clin. Immunol. 101: 691-698.
Stanley, J. S., King, N., Burks, A. W., Huang, S. K., Sampson, H., Cockrell, G., Helm, R. M., West, C. M. and Bannon, G. A. 1997. Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch. Biochem. Biophys. 342: 244-253.
Swoboda, I., Bugajska-Schretter, A., Verdino, P., Keller, W., Sperr, W. R., Valent, P., Valenta, R. and Spitzauer, S. 2002. Recombinant carp parvalbumin, the major cross-reactive fish allergen: a tool for diagnosis and therapy of fish allergy. J. Immunol. 168: 576-4584.
Takagi, H., Hirose, S., Yasuda, H. and Takaiwa, F. 2006. Biochemical safety evaluation of transgenic rice seeds expressing T cell epitopes of Japanese cedar pollen allergens. J. Agric. Food Chem. 54: 9901-9905.
Tamaki, M. and Ebata, M. 1989. Physico-ecological studies on quality formation of rice kernel III. Effects of ripening stage and some ripening conditions on free amino acids in milled rice kernel and in the exterior of cooked rice. Jpn. J. Crop Sci. 58: 695-703.
Towbin, H., Staehelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350-4354.
Tsukasa, M., Nomura, R. and Sugiyama, M. 1991. Immunochemical studies on rice allergenic proteins. Agric. Biol. Chem. 55: 509-513.
Usui, Y., Nakase, M., Hotta, H., Urisu, A., Aoki, N., Kitajima, K. and Matsuda, T. 2001. A 33-kDa allergen from rice (Oryza sativa L. Japonica). cDNA cloning, expression, and identification as a novel glyoxalase I. J. Biol. Chem. 276: 11376-11381.
Valenta, R., Vrtala, S., Laffer, S., Spitzauer, S. and Kraft, D. 1998. Recombinant allergens. Allergy 53: 552-561.
Van Do, T., Hordvik, I., Endresen, C., Elsayed, S. 1999. Expression and analysis of recombinant salmon parvalbumin, the major allergen in Atlantic salmon (Salmo salar) Scan. J. Immunol. 50: 619-625.
Varjonen, E., Savolainen, J., Mattila, L., Kalimo, K. 1994. IgE-binding components of wheat, rye, barley and oats recognized by immunoblotting analysis with sera from adult atopic dermatitis patients. Clin. Exp. Allergy 24: 481-489.
Varjonen, E., Bjorksten, F. and Savolainen, J. 1996. Stability of cereal allergens. Clin. Exp. Allergy 26: 436-443.
Yamada, C., Izumi, H., Hirano, J., Mizukuchi, A., Kise, M., Matsuda, T. and Kato, Y. 2005. Degradation of soluble proteins including some allergens in brown rice grains by endogenous proteolytic activity during germination and heat-processing. Biosci. Biotechnol. Biochem. 69: 1877-1883.
Yamada, C., Yamashita, Y., Seki, R., Izumi, H., Matsuda, T. and Kato, Y. 2006. Digestion and gastrointestinal absorption of the 14-16-kDa rice allergens. Biosci. Biotechnol. Biochem. 70: 1890-1897.
Zoccatelli, G., Pokoj, S., Foetisch, K., Bartra, J., Valero, A., Miguel-Moncin, M. M. S., Vieths, S. and Scheurer, S. 2010. Identification and characterization of the major allergen of green bean (Phaseolus vulgaris) as a non-specific lipid transfer protein (Pha v 3). Mol. Immunol. 47: 1561-1568.
Zorzi, M, D., Curioni, A., Simonato, B., Giannattasio, M. and Pasini, G. 2007. Effect of pasta drying temperature on gastrointestinal digestibility and allergenicity of durum wheat proteins. Food Chemistry 104: 353-363.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top