|
Aksay I.A., Dabbs D.M. and Sarikaya M. (1991), Mullite for structural, electronic, and optical applications, J. Am. Ceram. Soc. 74, 2343-2358. Allen M.P. and Tildesley D.J. (1987), Computer simulation of liquids, Oxford university press, New York, USA. Angel R.J. and Prewitt C.T. (1986), Crystal structure of mullite: a re-examination of the average structure, Am. Mineral. 71, 1476-1482. Angel R.J., McMullan R.K. and Prewitt C.T. (1991), Substructure and superstructure of mullite by neutron diffraction, Am. Mineral. 76, 332-342. Angel R.J. (2001a), EosFit5.2 users guide, http://www.geol.vt.edu/rja/ . Angel R.J. (2001b), Equation of state. In: Hazen R.M. and Downs R.T. (eds) High pressure, high temperature crystal chemistry: Rev. Mineral. Geochem. 41, 35-60. Born M. and Oppenheimer J.R. (1927), Zur Quantentheorie der Molekeln, Ann. Physik 389(20), 457-484. Burns G. and Glazer A.M. (1978), Space groups for solid state scientists, Academic press, New York, USA. Burt J.B., Ross N.L., Angel R.J. and Koch M. (2006), Equations of state and structures of andalusite to 9.8Gpa and sillimanite to 8.5Gpa, Am. Mineral. 91, 319-326. Carrasco J., Lopez N. and Lllas F. (2005), On the convergence of isolated neutral oxygen vacancy and divacancy properties in metal oxides using supercell models, J. Chem. Phys. 122, 224075-1224075-14. Catlow C.R.A. and Mackrodt W.C. (1982), Computer simulation of solids (Lecture notes in physics:166), Spring-Verlag, Berlin, Germany. Chiang Y.M., Birnie D.P. and Kingery W.D. (1997), Physical ceramics: principles for ceramic science and engineering, 1st ed., John Wiley & Sons, Indianapolis, USA, 146-147. Cook R.D., Malkus D.S., Plesha M.E. and Witt R.J. (2001), Concepts and applications of finite element analysis, 4th ed., John Wiley & Sons, New York, USA. Fielitz P., Borchardt G., Schmücker M., Schneider H., Wiedenbeck M., Rhede D., Weber S. and Scherrer S. (2001a), Secondary ion mass spectroscopy study of oxygen-18 tracer diffusion in 2/1-mullite single crystals, J. Am. Ceram. Soc. 84, 2845-2848. Fielitz P., Borchardt G., Schneider H., Schmücker M., Wiedenbeck M. and Rhede D. (2001b), Self-diffusion of oxygen in mullite, J. Eur. Ceram. Soc. 21, 2577-2582. Fielitz P., Borchardt G., Schmücker M. and Schneider H. (2007), A diffusion-controlled mullite formation reaction model based on tracer diffusivity data for aluminum, silicon and oxygen, Phil. Mag. 87, 111-127. Fischer R.X., Schneider H. and Schmücker M. (1994), Crystal structure of Al-rich mullite. Am. Mineral. 79, 983-990. Fischer R.X., Schneider H. and Voll D. (1996), Formation of aluminum rich 9:1 mullite and its transformation to low alumina mullite upon heating. J. Eur. Ceram. Soc. 16, 109-113. Fischer R.X. and Schneider H. (2005), Crystal chemistry of mullite and related phases. In: Schneider H. and Komarneni S. (eds) Mullite, Wiley-VCH, Weinheim, 1-46. Freimann S. and Rahman S. (2001), Refinement of the real structures of 2:1 and 3:2 mullite, J. Eur. Ceram. Soc. 21, 2453-2461. Grimes R.W., Catlow C.R.A. and Stoneham A.M. (1989), A comparison of defect energies in MgO using Mott-Littleton and quantum mechanical procedures, J. Phys.: Condens. Matter 1, 7367-7384. Guse W., Saalfeld H. and Tjandra J. (1979), Thermal transformation of sillimanite single crystals, N. Jb. Miner. Mh. 4, 175-181. Henkelman G., Uberuaga B.P. and Jónsson H. (2000), A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113(22), 9901-9904. Heyes D.M., Baxter J., Tuzun U. and Qin R.S. (2004), Discrete-element method simulations: from micro to macro scales, Phil. Trans. A Math. Phys. Eng. Sci. 362, 1853-1865. Hildmann B. and Schneider H. (2004), Heat capacity of mullite: new data and evidence for a high-temperature phase transformation, J. Am. Ceram. Soc. 87, 227-234. Hohenberg P. and Kohn W. (1964), Inhomogeneous electron gas, Phys. Rev. 136, B864-B871. Hoover W.G. (1985), Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A 31(3), 1695-1697. Hülsmans A., Schmücker M., Mader W. and Schneider H. (2000a), The transformation of andalusite to mullite and silica: Part I. Transfromation mechanism in [001]A direction, Am. Mineral. 85, 980-986. Hülsmans A., Schmücker M., Mader W. and Schneider H. (2000b), The transformation of andalusite to mullite and silica: Part II. Transfromation mechanism in [100]A and [010]A directions, Am. Mineral. 85, 987-992. Jónsson H., Mills G. and Jacobsen K.W. (1998), Nudged elastic band method for finding minimum energy paths of transitions. In: Berne B.J., Ciccotti G. and Coker D.F. (eds) Classical and quantum dynamics in condensed phase simulations, World Scientific, Singapore, 385-404. Kilo M., Argirusis C., Borchardt G. and Jackson R.A. (2003), Oxygen diffusion in yttria stabilized zirconia-experimental results and molecular dynamics calculations, Phys. Chem. Chem. Phys. 5, 2219-2224. Kittel C. (1996), Introduction to solid state physics, 7th ed., John Wiley & Sons, New York, USA. Kohn W. and Sham L.J. (1965), Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133-A1138. Kresse G. and Furthmüller J. (1996), Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169-11186. Kresse G. and Joubert D. (1999), From ultrasoft pesudopotentials to the projector augmented-wave method. Phys Rev B 59,1758-1775. Kriven W.M., Siah L.F., Schmücker M. and Schneider H. (2004), High temperature microhardness of single crystal mullite, J. Am. Ceram. Soc. 87, 970-972. Lacks D.J., Hildmann B. and Schneider H. (2005), Effects of disorder in mullite: molecular dynamics simulation and energy landscape analysis, Phys. Rev. B 72, 214305:1-5. Leslie M. and Gillan M.J. (1985), The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method, J. Phys. C: Solid State Phys. 18, 973-982. Lessing P.A., Gordon R.S. and Mazdiyasni K.S. (1975), Creep of polycrystalline mullite, J. Am. Ceram. Soc. 58, 149. Liu C.Z.-W. and Oppenheim I. (1996), Enhanced diffusion upon approaching the kinetic glass transition, Phys Rev. E 53, 799-802. Martin R.M. (2004), Electronic structure: basic theory and practical methods, Cambridge university press, Cambridge, UK. Martinón-Torres M, Rehren T. and Freestone I.C. (2006), Mullite and the mystery of Hessian wares, Nature, 444 (23), 437-438. Matsui M. (1994), A transferable interatomic potential model for crystals and melts in the system CaO-MgO-Al2O3-SiO2, Mineralo. Mag. 58A, 571-572. Matsui M. (1996), Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2, Phys. Chem. Minerals 23, 345-353. Melchionna S., Ciccotti G. and Holian B.L. (1993), Hoover NPT dynamics for systems varying in shape and size. Molec. Phys. 78, 533-544. Monkhorst H.J. and Pack J.D. (1976), Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188-5192. Nosé S. (1984), A unified formulation of the constant temperature molecular dynamics methods, J. Chem.. Phys. 81, 511-519. Oganov A.R., Price G.D. and Brodholt J.P. (2001), Theoretical investigation of metastable Al2SiO5 polymorphs, Acta Cryst. Sec. A A57, 548-557. Oganov A.R. and Dorogokupets P.I. (2003), All-electron and pseudopotential study of MgO: equation of state, anharmonicity, and stability, Phys. Rev. B 67, 224110:1-11. Padlewski S., Heine V. and Price G.D. (1992), The energetic of interaction between oxygen vacancies in sillimanite: a model for the mullite structure, Phys. Chem. Minerals 19, 196-202. Padlewski S., Heine V. and Price G.D. (1993), A microscopic model for a very stable incommensurate modulated mineral: mullite, J. Phys.: Condens. Matter 5, 3417-3430. Parrinello M. and Rahman A. (1981), Polymorphic transitions in single crystals: a new molecular dynamics method. J. Apply. Phys. 52, 7182-7190. Payne M.C., Teter M.P., Allan D.C., Arias T.A. and Joannopoulos J.D. (1992), Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64(4), 1045-1097. Perdew J.P., Burke K. and Ernzerhof M. (1996), Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865-3868. Perdew J.P., Chevary J.A., Vosko S.H., Jackson K.A., Pederson M.R. and Singh D.J. (1992), Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46, 6671-6687. Phillips R. (2001), Crystals, defects and microstructures: modeling across scales, Cambridge university press, Cambridge, UK. Probert M.I.J. (2003), Improved algorithm for geometry optimization using damped molecular dynamics, J. Comput. Phys. 191, 130-146. Raabe D. (1998), Computational materials science: the simulation of materials microstructures and properties, Wiley-VCH, Weinheim, Germany. Rahman S.H. (1993), The videographic method: a new procedure for the simulation and reconstruction of real structures, Acta. Cryst. A49, 56-68. Rahman S.H., Strothenk S., Paulmann C. and Feustel U. (1996), Interpretation of mullite real structure via intervacancy correlation vectors, J. Eur. Ceram. Soc. 16, 177-186. Rehak P., Kunath-Fandrei G., Losso P., Hildmann B., Schneider H. and Jäger C. (1998), Study of the Al coordination in mullites with varying Al:Si ratio by 27Al NMR spectroscopy and X-ray diffraction, Am Mineral. 83, 1266-1276. Sadanaga R., Tokonami M. and Takéuchi Y. (1962), The structure of mullite, 2Al2O3.SiO2, and relationships with the structures of sillimanite and andalusite, Acta Cryst. 15, 65-68. Schmücker M. and Schneider H. (2002), New evidence for tetrahedral triclusters in aluminosilicate glasses, J. Non-Crystal. Solids 311, 211-215. Schmücker M., Hildmann B. and Schneider H. (2002), Mechanism of 2/1- to 3/2-mullite transformation at 1650°C, Am. Mineral. 87, 1190-1193. Schmücker M., Schneider H., MacKenzie K.J.D, Smith, M.E. and Carroll D.L. (2005), AlO4/SiO4 distribution in thtrahedral double chains of mullite, J. Am. Ceram. Soc. 88, 2935-2937. Schneider H. and Eberhard E. (1990), Thermal expansion of mullite, J. Am. Ceram. Soc. 73, 2073-2076. Schneider H., Rodewald K. and Eberhard E. (1993), Thermal expansion discontinuities of mullite, J. Am. Ceram. Soc. 76, 2896-2898. Schneider H., Okada K. and Pask J.A. (1994), Mullite and mullite ceramics, John Wiley & Sons Ltd, West Sussex, UK. Schneider H. and Komarneni S. (2005), Mullite, Wiley-VCH, Weinheim, Germany. Schneider H. (2005), Basic properties of mullite. In: Schneider H. and Komarneni S. (eds) Mullite, Wiley-VCH, Weinheim, 141-188. Schneider H., Schreuer J. and Hildmann B. (2007), Structure and properties of mullite—A review, J. Eur. Ceram. Soc. (in press), doi:10.1016/j.jeurceramsoc 2007.03.017. Schreuer J., Hildmann B. and Schneider H. (2006), Elastic properties of mullite single crystals up to 1400℃, J. Am. Ceram. Soc. 89, 1624-1631. Smith W. and Forester T.R. (1996), DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package. J. Molec. Graphics 14, 136-141. Smith W., Forester T.R., Todorov I.T. and Leslie, M. (2006), The DL_POLY_2 user manual (version 2.17), Daresbury Laboratory, UK. Sosman R.B. (1956), A pilgrimage to mull, Am. Ceram. Soc. Bull. 35 (3), 130-131. Sastry S., Debenedetti P.G. and Stillinger F.H. (1998), Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid, Nature 393(11), 554-557. Tannehill J.C., Anderson D.A. and Pletcher R.H. (1997), Computational fluid mechanics and heat transfer, 2nd ed., Taylor & Francis, Philadelphia, USA. Truhlar D.G., Garrett B.C. and Klippenstein S.J. (1996), Current status of transition-state theory, J. Phys. Chem. 100, 12771-12800. Voter A.F., Montalenti F. and Germann T.C. (2002), Extending the time scale in atomistic simulation of materials, Annu. Rev. Mater. Res. 32, 321-346. Wang Y. and Perdew J.P. (1991), Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Phys. Rev. B 44,13298-13307. Welberry T.R. and Withers R.L. (1990), An optical transform and Monte Carlo study of the diffuse X-ray scattering in mullite, Al2(Al2+2xSi2-2x)O10-x, Phys. Chem. Minerals 17, 117-124. Winkler A., Horbach J., Kob W. and Binder K. (2004), Structure and diffusion in amorphous aluminum silicate: a molecular dynamics computer simulation, J. Chem. Phys. 120, 384-393. Winkler B., Hytha M., Warren M.C., Milman V., Gale J.D. and Schreuer J. (2001), Calulcation of the elastic constants of the Al2SiO5 polymorphs andalusite, sillimanite and kyanite. Z Kristallogr. 216, 67-70. Winkler B., Milman V., Hennion B., Payne M.C., Lee M.-H. and Lin J.S. (1995), Ab initio total energy study of brucite, diaspore and hypothetical hydrus wadsleyite, Phys Chem Minerals 22, 461-467. Winter J.K. and Ghose S. (1979), Thermal expansion and high-temperature crystal chemistry of the Al2SiO5 polymorphs, Am. Mineral. 64, 573-586. Wondraczek L., Heide G., Kilo M., Nedeljkovic N., Borchardt G. and Jackson R.A. (2002), computer simulation of defect structure in sillimanite and mullite, Phys Chem. Minerals 29, 341-345. Zettili N. (2001), Quantum mechanics: concepts and applications, John Wiley & Sons Ltd, West Sussex, UK.
|