跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:連紹宇
研究生(外文):Shao-Yu Lien
論文名稱:在IEEE802.15.3無線個人網路上之多媒體資料預測器、動態頻寬分配與允許進入控制機制
論文名稱(外文):Traffic Predicion, Dynamic Bandwidth Allocation, and Call Admission Control with Multimedia Traffic over IEEE 802.15.3 WPAN
指導教授:郭文光
指導教授(外文):Wen-Kuang Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:92
中文關鍵詞:無線個人網路多媒體服務品質保證動態頻寬分配允許進入控制機制
外文關鍵詞:Call Admission ControlDynamic Bandwidth AllocationWPANmultimediaQoS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因為極寬頻(Ultra Wideband, UWB)技術的出現,使得短距無線多媒體傳輸成為可能。而IEEE 802.15.3為極寬頻媒體存取控制層(MAC layer)的候選標準之一。因短距多媒體傳輸的應用越來越受到注目,本篇論文將發展一套在IEEE 802.15.3上,多條多媒體資料流傳輸時的頻寬分配機制與允許進入控制機制。為了更有效率的使用頻寬資源,及減少實做成本(例如,緩衝記憶體的需要),我們首先建立一個針對MPEG 4即時可變位元率(Real-time VBR)資料的線性預測器。不同於以往以LMS(Least-Mean Squire)為基礎的線性預測器,我們採用片段線性(piecewise linear)。根據模擬顯示,我們能獲得比以往線性預測器有更佳的準確性。
我們基於預測器的結果作下一個時間的頻寬分配,但以LMS為基礎的線性預測器在頻寬需求突然增加時會發生頻寬低估的問題,而這個頻寬需求的突然增加常是因為畫面的不連續或是變換鏡頭。這些因為頻率低估所發生的傳輸錯誤情形便由動態頻寬分配演算法作補償。動態頻寬分配演算法的錯誤補償是基於兩個概念:第一是自我補償,這是單一多媒體資料流作自我頻寬保留,而補足因為預測錯誤所導致的頻寬不足。第二是群體補償,這是多條多媒體資料流藉由統計多功方式(statistical multiplex)補足不夠的頻寬。模擬顯示我們的動態頻寬分配演算法在有多條多媒體資料流存在時能獲得相當低的頻寬不足錯誤,且保持相當高的頻寬利用率。
隨著高速WPAN的應用越來越普遍,在一個狹小區域可能會有多個小網路(piconet)彼此的傳輸範圍相互重疊。在這個情況下,IEEE 802.15.3允許鄰居網路(neighbor piconet)或子代網路(child piconet)向母網路(parent piconet)借用頻寬。而鄰居網路或子代網路也可將自己的頻寬再借給其他網路。在本論文中,我們的允許進入控制機制除了考慮單一網路內的頻寬請求外,也處理階層式的頻寬請求。藉由模擬,我們建立在IEEE 802.15.3上單一網路的MPEG 4頻寬分佈模型,並進而建立階層式的頻寬分佈數學模型。並建立基於此數學模型的以量測為基礎的允許進入控制(MBCA)機制。模擬顯示我們的允許進入控制機制能服務品質保證的情況下達到相當高的網路使用率。
Because of the present of the Ultra-Wide-Band(UWB) technology, the short range, wireless multimedia transmissions are becoming possible. IEEE 802.15.3 is now to be one of the candidates of the UWB medium access control layer standard. The short range, wireless multimedia transmissions are getting more and more attentions recently. In this paper, we develop a dynamic bandwidth allocation scheme and a call admission control mechanism with multi-multimedia streams on IEEE 802.15.3. In order to utilize the bandwidth more efficiency and reduce the implementation costs (e.g., the needs of buffers ), we construct a linear traffic predictor for real-time MPEG4 traffic. Rather than traditional LMS-based linear predictor, we develop a piecewise linear predictor. Simulation shows that the piecewise linear predictor can achieve a higher degree of accuracy.
Base on the results of the traffic predictor, we allocate bandwidth to individual streams. But, the LMS-based predictor would suffer the prediction error due to the underestimation of the bandwidth when the requirement of the bandwidth of the stream increases suddenly. This kind of the increment of the bandwidth requirement is due to the un-continuous of frames or due to the scene change. The transmission error due to underestimation can be compensated by the dynamic bandwidth allocation algorithm. The compensation of the error is based on two concepts: the first one is self-compensation, that is; an individual stream reserves a few bandwidth for itself to compensate the prediction error. The second one is aggregate compensation, that is; to compensate the by statistical multiplex. Our simulation demonstrates that our dynamic bandwidth allocation algorithm can give a low error rate and high utilization under the circumstance that several streams transmit their data simultaneously.
With the widespread of applications of the high-rate WPAN, it could be several piconets coexist in a small area with their transmission ranges overlap mutually. Under this circumstance, the IEEE 802.15.3 standard permits the neighbor piconet or child piconet to borrow bandwidth from parent piconet. And the neighbor piconet or child piconet can also lend their bandwidth to other piconet. In this paper, our call admission control mechanism considers besides the bandwidth request within a piconet, we also consider the hierarchical bandwidth request. We construct the MPEG4 bandwidth probability distribution model over IEEE 802.15.3 and develop a measurement based call admission control mechanism. Simulation shows that our call our CAC can achieve very high network utilization and the QOS can be guaranteed.
摘要..................................................................................................................................... I
Abstract........................................................................................................................... III
Figure index..................................................................................................................... VI
Table index........................................................................................................................ X
Chapter 1 Introduction................................................................................................ 1
1.1 Introduction to IEEE 802.15.3 MAC layer standard .................................. 2
1.2 Research motivation and introduction.......................................................... 5
1.3 Architecture of the paper ............................................................................... 5
Chapter 2 Piecewise linear LMS-based predictor....................................................... 6
2.1 Characteristics of MPEG traffic.................................................................... 7
2.2 Introduction to LMS-based linear predictor and related work................ 10
2.3 Prediction of I frame..................................................................................... 15
2.4 Prediction of P frame .................................................................................... 18
2.5 Prediction of B frame.................................................................................... 20
Chapter 3 Dynamic Bandwidth Allocation and transmission scheme. ................... 22
3.1 Why we need dynamic bandwidth allocation algorithm?......................... 22
3.2 DBA for I frame ............................................................................................ 22
3.2.1 Self- compensation .............................................................................. 25
3.2.2 Aggregate- compensation ................................................................... 28
3.3 DBA for P and B sequence.......................................................................... 39
3.4 Transmission scheme .................................................................................... 39
3.5 Bandwidth allocation and transmission scheme with asynchronous
MPEG-4 transmission. ................................................................................. 44
Chapter 4 Call Admission Control ........................................................................... 47
4.1 Call admission control within a piconet...................................................... 47
4.2 Call admission control with bandwidth borrowing from and lending to
other piconet .................................................................................................. 61
Chapter 5 Simulation results ...................................................................................... 74
5.1 Performance of piecewise linear predictor ................................................. 74
5.2 Performance of the dynamic bandwidth allocation algorithm................. 81
5.3 Performance of the measurement-based call admission control algorithm.
......................................................................................................................... 84
Chapter 6 Conclusions................................................................................................. 90
Reference ......................................................................................................................... 91
[1] IEEE, Part 15.3: Wireless Medium access control (MAC) and Physical Layer
(PHY) Specifications for High Rate Wireless Personal Area Networks (WPAN),
Sep. 2003.
[2] A. M. Adas, “Using adaptive linear prediction to support real-time VBR
video under RCBR network service model” IEEE/ACM Trans. Networking, vol.
6, pp. 635-644, 1998.
[3] S. J. Yoo, “Efficient traffic prediction scheme for real-time VBR MPEG
video transmission over high-speed networks.” IEEE Trans. Broadcasting,
vol. 48, pp. 10-18, 2002.
[4] H. Zhao, N. Ansari, and Y. Q. Shi, “Efficient predictive bandwidth
allocation for real time videos.” IEICE Trans. COMMUN, vol. E86-B, 2003.
[5] Kihong Park & Walter Willinger, “Self-similar Network traffic and
performance Evaluation”, John Wiley & Sons, 2000.
[6] P. R. Jelenkovic, A. A. Lazar, and Nemo Semret, “The effect of multiple
time scales and subexponentiality in MPEG video streams on Queueing
behavior” IEEE JSAC, vol. 15, pp. 1052-1071, 1997.
[7] MBOA MAC Specification for High Rate WPANs, Draft 0.99, 2005.
[8] H. Li, G. Liu, Z. Zhang, and Y. Li, “Adaptive scene-detection algorithm
for VBR video stream.” IEEE Trans. Multimedia, vol. 6, pp. 624-633, 2004.
[9] T. Borsos, “On the characteristics of video traffic” IEEE Proc. LCN,
2001.
[10] Y. Liang, “Real-time VBR video traffic prediction for dynamic bandwidth
allocation.” IEEE Trans. System, MAN, and Cybernetics, vol. 34, pp. 32
-47, 2004.
[11] M. J. Lee, “Video traffic prediction based on source information and
preventive channel rate decision for RCBR.” IEEE Trans. Broadcasting,
2005.
[12] J. Qiu and E. W. Knightly, “Measurement-based admission control with
aggregate traffic envelopes.” IEEE/ACM Trans. Networking, vol. 9, pp. 199
-210, 2001.
[13] M. Grossglauser and David N. C. Tse
[14] S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang, “A measurement
-based admission control algorithm for integrated service packet
networks.” IEEE/ACM Trans. Networking, vol. 5, pp. 56-70, 1997.
[15] M. Grossglauser and David N. C. Tse, “A framework for robust measurement
-based adminssion control.” IEEE/ACM Trans. Networking, vol 7, pp. 293
-309, 1999.
[16] X. Shen, W. Zhuang, H. Jiang, and J. Cai, “Medium access control in
ultra-wideband wireless networks.” IEEE Trans. Vehicular Technology,
vol. 54, pp. 1663-1677, 2005.
[17] M. Grossglauser, S. Keshav, and David N. C. Tse, “RCBR: A simple and
efficient service for multiple time-scale traffic” IEEE/ACM Trans.
Networking, vol. 5, pp. 741-755, 1997.
[18] H. Liu and G. Mao, “Prediction algorithm for real-time variable-bit-rate
video” Asia-Pacific conference on communication, 2005.
[19] Xu W, Qureshi A. “Adaptive linear prediction of MPEG video traffic” In
Proceeding of the Fifth International Symposium on Signal Proceeding and
its applications, vol. 1, pp. 67-70, 1999.
[20] Bhattacharya A, Parlos A, Atiya A. “Prediction of MPEG-coded video
source traffic using recurrent neural network” IEEE Trans. Signal
Processing, pp. 2177-2190, 2003.
[22] Khotanzad A, Sadek N, “Multi-scale high speed network traffic prediction
using combination of neural networks.” Proceedings of the international
Joint Conference on Neural Networks, pp. 1071-1075, 2003
[23] Azeem M, Hanmandlu M, Ahmad N, “Generalization of adaptive neuro-fuzzy
inference systems” IEEE Trans. Neural Networks, pp. 1332-1346, 2000.
[24] Adel A. “Short-term MPEG-4 video traffic prediction using ANFIS”
Internal Journal of Network Management, pp. 377-392, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊