|
Anderson, T.W., 2003. An Introduction to Multivariate Statistical Analysis, third ed. Wiely, New York.
Azzalini A., Capitaino A., 2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. Roy. Stat. Soc. See. B 65,367-389.
Azzalini, A., 2005. The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics 32, 159–188.
Arellano-Valle, R., Genton, M., 2005. On fundamental skew distributions. Journal of Multivariate Analysis 96, 93–116. Arellano-Valle, R., Azzalini, A., 2006. On the unification of families of skew-normal distributions. Scandinavian Journal of Statistics 33, 561–574.
Arellano-Valle, R. B., Branco, M. D., Genton, M. G., 2006. A unified view on skewed distributions arising from selections. Canadian Journal of Statistics 34, 581–601. Andrews, J.L., McNicholas, P.D., 2011. Extension mixture of multivariate t-factor analyzers. Stat. Comput. 21, 361-373.
Banfield, J. D., Raftery, A. E., 1993. Model-based gaussian and non gaussian clustering. Biometrics, 49:803 – 821. B hning, D., Dietz, E., Schaub, R., Schlattmann, P., Lindsay, B., 1994. The distribution of the likelihood ratio for mixture of densities from the one-parameter exponential family. Annals of the Institute of Statistical Mathematics 46 373- 388.
Biernacki, C., Celeux, G., Govaert, G., 2000. Assessing a mixture model for clustering with the intergrated completed likelihood. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 719-725.
Brooks, S. P., Giudici, P., Roberts, G. O., 2003. Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion). J.R. Statist. Soc. B 65, 1 – 37.
Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Spring, Singapore.
Chib, S., Greenberg, E., 1995. Understanding the Metropolis-Hastings algorithm. American Statistician, 49: 327 – 335. 42
Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm (with discuss). Journal of the Royal Statistical Society B 39,1-38.
Efron, B., Hinkley, D.V., 1978. Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher Information (with discussion). Biometrika 65 457–487.
Everitt, BS., Hand, D.J., 1981. Finite Mixture Distributions. Monogrphs on Statistics and Applied Probability. Chapman, Hall, London, New York.
Fraley, C., Raftery, A.E., 1998. How many clustering? Which clustering method? Answer via model-based cluster analysis. The Computer Journal 41, 578-588.
Fr‥uhwirth-Schnatter, S., 2006. Finite Mixture and Markov Switching Models. Spring, New York.
Green, P. J., 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711 – 732.
Hastings, W.K., 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57, 97 – 109.
Hubert, L.J., Arabie, P., 1985. Comparing Partitions. Journal of Classification, 2, 193-218.
Kim, Jae-On., James Curry., 1977. The treatment of missing data in multivariate analysis. Sociological Methods and Research, 6:206-240.
Keribin, C., 2000. Consistent estimation of the order of mixture models. Sankhya Ser. 62, 49-66.
Liu, C.H., Rubin, D.B., Wu, Y.N., 1998. Parameter expansion to accelerate EM: the PX-EM algorithm. Biometrika 85, 755-770.
Lin, T.I., Lee, J.C., Yen, S.Y., 2007 Finite mixture modelling using the skew normal distribution. Stat. Sin. 17, 909–927.
Lin, T.I.,2010. Robust mixture modeling using multivariate skew t distributions. Statist. Comput. 20, 343-356.
McLachlan, G.J., Basford, K.E., 1988. Mixture models: inference and application to clustering. Marcel Dekker, New York.
Meilijson I., 1989. A fast improvement tot the EM algorithm to its own terms. Journal of the Royal Statistical Society, Series B, 51, 127-138
Meng, X.L., Rubin, D.B., 1993. Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267–278. 43
Meng, X.L., van Dyk, D, 1997. The EM algorithm-an old folk song sung to a fast new tune (with discuss). Journal of the Royal Statistical Society B 59, 511-567.
McLachlan, G.J., Peel D., 2000. Finite Mixture Models. Wiely, New York.
McNicholas., T. B. Murphy., 2008. Parsimonious Gaussian mixture models. Statistics and Computing, 18, 285 – 296. McLachlan, G.J., Krishnan, T., 2008. The EM algorithm and extensions, 2nd edn, John Wiley and Sons, New York.
Pyne S., Hu, X., Wang, K., Rossin, E., Lin, T.I., Maier, L.M., Baecher-Allan, C., McLachlan, G.J., Tamayo, P., Hafler, D.A., De Jager, P.L. and Mesirov, J.P., 2009. Automated high- dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences (PNAS) USA, 106, 8519-8524.
Reder, R.A., Walker, H.F., 1984. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26, 195-239. Schwarz, G., 1978. Estimating the dimension of a model. Annals of Statistics 6, 461-464.
Sahu, S.K., Dey, D.K., Branco, M.D., 2003. A new class of multivariate skew distributions with application to Bayesian regression models. The Canadian Journal of Statistics, 31, 129– 150.
Titterington, D.M., Smith, A.F.M., Makov, U.E. 1985. Statistical Analysis of Finite Mixture Distributions. Wiley, New York.
Vrbik, I., P. D. McNicholas., 2014. Parsimonious skew mixture models for modelbased clustering and classification. Computational Statistics and Data Analysis. To appear.
Wang, K., 2009. EMMIX-skew (R package version 1.0-12): EM Algorithm for Mixture of Multivariate Skew Normal/t Distributions.
|