跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐佳慧
研究生(外文):Chia-Hui Hsu
論文名稱:具不完整資料的混合偏斜t分佈之基於模式分群
論文名稱(外文):Model-based clustering via mixture of skew-t distribution with missing information
指導教授:林宗儀林宗儀引用關係
指導教授(外文):Tsung-I Lin
口試委員:吳宏達王婉倫
口試委員(外文):Hong-Dar Isaac WuWan-Lun Wang
口試日期:2014-06-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:44
中文關鍵詞:EM 演算法最大概似函數多變量偏斜混合分配多變量偏斜常態分配多變量偏斜t分配
外文關鍵詞:EM-type algorithmsmaximum likelihood estimationmultivariate skew t mixture modelrMSN distributionrMST distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,利用偏斜t分配的多變量混合建模方法對於穩健性的基於模式分群與分類上已被視為一個有效且具彈性的工具。研究學者實際上普遍會遇到資料含有遺失值的問題。在這篇論文中,當資料含有遺失值時,對於多變量偏斜t 模型的最大概似函數的估計我們提供一個計算上便利的EM-type 程序。此外,我們提出一個基於共同訊息的方法,使用分數的外積來求取最大概似估計值近似的共變異數矩陣。在我們的演算法中,為了協助推導與執行上的便利,我們利用兩個輔助
的排列矩陣快速判斷每筆觀察項目中可觀察到與遺失的部分。最後,我們藉由不同遺失比例下的模擬資料與含有遺失值的實例來闡述所提出方法的實用性。
Multivariate mixture modeling approach using the skew-t distribution has been recently examined as a powerful and flexible tool for robust model-based clustering and classification. Missing data are a ubiquitous problem for researchers encountered in practice. In this thesis, we offer a computationally flexible EM-type procedure for maximum likelihood estimation of multivariate skew-t mixture models when missing values occur in data. Further, we present a common information-based approach to approximating the asymptotic covariance matrix of the ML estimator using the outer product of the scores. To assist the development and ease the implementation of our algorithm, we make use of two auxiliary permutation matrices for fast determining
the observed and missing parts of each observation. The practical usefulness of the proposed methodology is illustrated through simulations with varying proportions of artificial missing values and a real data example with genuine missing values.
1. 導論 1
2. 背景知識 3
2.1. 受限的多變量偏斜常態分配 3
2.2. 受限的多變量偏斜t 分配 4
3. 具遺失訊息的多變量混合偏斜t 模型7
3.1. 模型架構 7
3.2. 用ECM 演算法計算最大概似估計 9
3.3. 估計的標準誤差 12
4. 計算策略 14
4.1. 初始值的設定 14
4.2. 收斂性評估 14
4.3. 模型選擇 15
4.4. 效能評估 16
5. 模擬研究 17
5.1. 模擬一 17
5.2. 模擬二 19
6. 實例分析 22
7. 結論 27
A. 具遺失訊息的MSTMIX 模型邊際分配推導 28
B. ECM 演算法之E 步驟的證明 30
C. 印地安人糖尿病相關資料分析 38
Anderson, T.W., 2003. An Introduction to Multivariate Statistical Analysis, third ed. Wiely, New York.

Azzalini A., Capitaino A., 2003. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. Roy. Stat. Soc. See. B 65,367-389.

Azzalini, A., 2005. The skew-normal distribution and related multivariate families. Scandinavian Journal of Statistics 32, 159–188.

Arellano-Valle, R., Genton, M., 2005. On fundamental skew distributions. Journal of Multivariate Analysis 96, 93–116.
Arellano-Valle, R., Azzalini, A., 2006. On the unification of families of skew-normal distributions. Scandinavian Journal of Statistics 33, 561–574.

Arellano-Valle, R. B., Branco, M. D., Genton, M. G., 2006. A unified view on skewed distributions arising from selections. Canadian Journal of Statistics 34, 581–601.
Andrews, J.L., McNicholas, P.D., 2011. Extension mixture of multivariate t-factor analyzers. Stat. Comput. 21, 361-373.

Banfield, J. D., Raftery, A. E., 1993. Model-based gaussian and non gaussian clustering. Biometrics, 49:803 – 821.
B hning, D., Dietz, E., Schaub, R., Schlattmann, P., Lindsay, B., 1994. The distribution of the likelihood ratio for mixture of densities from the one-parameter exponential family. Annals of the Institute of Statistical Mathematics 46 373- 388.

Biernacki, C., Celeux, G., Govaert, G., 2000. Assessing a mixture model for clustering with the intergrated completed likelihood. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 719-725.

Brooks, S. P., Giudici, P., Roberts, G. O., 2003. Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions (with discussion). J.R. Statist. Soc. B 65, 1 – 37.

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Spring, Singapore.

Chib, S., Greenberg, E., 1995. Understanding the Metropolis-Hastings algorithm. American Statistician, 49: 327 – 335. 42

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete
data via the EM algorithm (with discuss). Journal of the Royal Statistical Society B 39,1-38.

Efron, B., Hinkley, D.V., 1978. Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher Information (with discussion). Biometrika 65 457–487.

Everitt, BS., Hand, D.J., 1981. Finite Mixture Distributions. Monogrphs on Statistics and Applied Probability. Chapman, Hall, London, New York.

Fraley, C., Raftery, A.E., 1998. How many clustering? Which clustering method? Answer via model-based cluster analysis. The Computer Journal 41, 578-588.

Fr‥uhwirth-Schnatter, S., 2006. Finite Mixture and Markov Switching Models. Spring, New York.

Green, P. J., 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711 – 732.

Hastings, W.K., 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57, 97 – 109.

Hubert, L.J., Arabie, P., 1985. Comparing Partitions. Journal of Classification, 2, 193-218.

Kim, Jae-On., James Curry., 1977. The treatment of missing data in multivariate analysis. Sociological Methods and Research, 6:206-240.

Keribin, C., 2000. Consistent estimation of the order of mixture models. Sankhya Ser. 62, 49-66.

Liu, C.H., Rubin, D.B., Wu, Y.N., 1998. Parameter expansion to accelerate EM: the PX-EM algorithm. Biometrika 85, 755-770.

Lin, T.I., Lee, J.C., Yen, S.Y., 2007 Finite mixture modelling using the skew normal distribution. Stat. Sin. 17, 909–927.

Lin, T.I.,2010. Robust mixture modeling using multivariate skew t distributions. Statist. Comput. 20, 343-356.

McLachlan, G.J., Basford, K.E., 1988. Mixture models: inference and application to clustering. Marcel Dekker, New York.

Meilijson I., 1989. A fast improvement tot the EM algorithm to its own terms. Journal of the Royal Statistical Society, Series B, 51, 127-138

Meng, X.L., Rubin, D.B., 1993. Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267–278. 43

Meng, X.L., van Dyk, D, 1997. The EM algorithm-an old folk song sung to a fast new tune (with discuss). Journal of the Royal Statistical Society B 59, 511-567.

McLachlan, G.J., Peel D., 2000. Finite Mixture Models. Wiely, New York.

McNicholas., T. B. Murphy., 2008. Parsimonious Gaussian mixture models. Statistics and Computing, 18, 285 – 296.
McLachlan, G.J., Krishnan, T., 2008. The EM algorithm and extensions, 2nd edn, John Wiley and Sons, New York.

Pyne S., Hu, X., Wang, K., Rossin, E., Lin, T.I., Maier, L.M., Baecher-Allan, C., McLachlan, G.J., Tamayo, P., Hafler, D.A., De Jager, P.L. and Mesirov, J.P., 2009. Automated high- dimensional flow cytometric data analysis. Proceedings of the National Academy of Sciences (PNAS) USA, 106, 8519-8524.

Reder, R.A., Walker, H.F., 1984. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26, 195-239.
Schwarz, G., 1978. Estimating the dimension of a model. Annals of Statistics 6, 461-464.

Sahu, S.K., Dey, D.K., Branco, M.D., 2003. A new class of multivariate skew distributions with application to Bayesian regression models. The Canadian Journal of Statistics, 31, 129– 150.

Titterington, D.M., Smith, A.F.M., Makov, U.E. 1985. Statistical Analysis of Finite Mixture Distributions. Wiley, New York.

Vrbik, I., P. D. McNicholas., 2014. Parsimonious skew mixture models for modelbased clustering and classification. Computational Statistics and Data Analysis. To appear.

Wang, K., 2009. EMMIX-skew (R package version 1.0-12): EM Algorithm for Mixture of Multivariate Skew Normal/t Distributions.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top