跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.121) 您好!臺灣時間:2025/12/11 13:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭惟齡
研究生(外文):Wei-Ling Cheng
論文名稱:建立快速藥物篩選系統發現脊髓肌肉萎縮症病人細胞內促進SMN2mRNA包含exon7的化合物
論文名稱(外文):High-throughput Screening for Novel Compounds Which Increase the SMN2 mRNA Exon7 Inclusion in Spinal Muscular Atrophy Cells
指導教授:鐘育志鐘育志引用關係
指導教授(外文):Yuh-Jyh Jong
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:66
中文關鍵詞:脊髓肌肉萎縮症快速藥物篩選系統運動神經元存活1基因運動神經元存活蛋白
外文關鍵詞:Spinal muscular atrophyHigh-throughput screening systemSurvival motor neuron 1 (SMN1) geneSurvival motor neuron (SMN) protein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
脊髓肌肉萎縮症(spinal muscular atrophy,簡稱SMA)是一種體隱性遺傳疾病,也是造成兩歲以下嬰兒死亡最常見的一種遺傳疾病。 SMA的主要病理特徵為脊髓運動神經元的退化,造成臨床上肌肉萎縮與無力。 SMA主要病因是由survival motor neuron 1 (SMN1) 基因的缺損或突變,造成SMN全長蛋白質減少所致。 SMN蛋白質可由兩個極為相似的基因SMN1及SMN2表現。 這兩個基因最重要的差別是在exon 7上一個鹼基的差異,導致SMN1基因主要產生SMN full-length (FL) mRNA及蛋白質,而SMN2基因則主要產生缺少exon 7的SMN truncated (TR) mRNA及蛋白質。
因為SMA病人身上都帶有至少一個SMN2 基因,所以目前治療SMA的方法中,以藥物刺激SMN2 基因,來增加病人細胞內SMN全長蛋白質的量是短期內可行的治療方式。 而增加SMN 全長蛋白質的表現量可經由促進SMN2 基因啟動子 (promoter) 的轉錄或改變SMN2 mRNA splicing來達成。 目前有幾種合成物可增加SMA病人細胞之SMN全長蛋白質,但這些藥物大多因藥毒性及副作用,並不適合發展於治療SMA。
爲了篩選更有效又安全的新藥物,因此我們建立快速藥物篩選系統。 目前除了含有SMN2 minigene-luciferase質體的HeLa人類子宮頸癌細胞系統,在NSC34運動神經元細胞上也建立類似的系統,希望能夠快速篩選針對運動神經元細胞,且能改變SMN2 mRNA splicing而增加SMN全長蛋白質表現量的藥物。 利用上述的藥物篩選系統,我們已經篩選了248種中草藥萃取物及化學合成物,期望能夠篩選到與國外不同的獨特藥物。 初步篩選出39號、49號、91號三種具潛力藥物,再進一步以SMA病人淋巴細胞株做測試,發現91號藥物非但增加了SMN FL mRNA,也增加SMN全長蛋白質、及gems的表現量。
91號藥物經確認為一種分離自一葉秋葉中的生物鹼-一葉秋鹼 (securinine)。 我們的發現增加了SMA治療藥物的一種新的類型。 未來我們將分析一葉秋鹼的類似物及衍生物,希望能開發出毒性更低、效果更好的藥物。 然後,這些潛力藥物也將進一步在SMA病鼠上測試及進行臨床試驗,期望所開發的新藥能改善SMA病人的生活品質,並能夠成功地治療病人。
Spinal muscular atrophy (SMA) is an autosomal recessive disorder that is one of the leading hereditary causes of infantile mortality in the world. SMA is characterized by the degeneration of moton neurons in the anterior horn of spinal cord, resulting in progressive muscle atrophy and paralysis. SMA is caused by reduced levels of SMN (survival motor neuron) full-length (FL) protein as a result of deletion or mutation of the SMN1 gene. SMN protein can be expressed from two nearly identical genes, SMN1 and SMN2. An important difference between these two genes is a single nucleotide change on exon 7. As a result, the majority of the transcript from SMN2 lacks exon 7, thus producing an SMN truncated (TR) mRNA and protein.
Because SMA patients carry at least one SMN2 gene, drug stimulation of SMN2 gene to produce more FL SMN protein is a feasible treatment for SMA. Increase of FL SMN protein expression can be achieved by promoting SMN2 gene transcription or by modulating SMN2 mRNA splicing. Several compounds were described to increase SMN protein levels in cells derived from SMA patients, but most of these compounds were not suitable for SMA therapy due to their toxicity and side-effects.
In order to develop more specific and safe drugs, we have already established a high-throughput HeLa cell system which can be used to screen for drugs that modulate SMN2 mRNA splicing. In addition, we have also established a similar system in NSC34 motoneuron cells which can be used to screen for drugs that function in motoneurons. Using the above systems, we have already screened 248 compounds, including synthetic chemicals and compounds extracted from Chinese herbal medicine. Three potential compounds, #39, #49 and #91, have been selected and further tested in the lymphoid cell lines from SMA patients. One of these compounds, #91, can increase the expression of SMN FL mRNA and protein, and also the number of gems in SMA cells.
The compound #91 was identified as securinine, an alkaloid extracted from Securinega suffruticosa. Our finding adds a new category to the list of potential SMA drugs. In the future we will analyze similar compounds or derivatives of securinine to develop more SMA drug(s) with less toxicity and better efficacy. These potential drugs will then be tested in SMA mouse model and human clinical trial. We hope the new drugs will amend the quality of SMA patients’ lives and successfully provide therapeutics for SMA.
中文摘要 ……………………………………………………………2
英文摘要 ……………………………………………………………4
簡寫表 ………………………………………………………………6
序論 …………………………………………………………………7
實驗設計與流程 ……………………………………………………16
材料與方法 …………………………………………………………18
結果 …………………………………………………………………28
圖表 …………………………………………………………………34
討論 …………………………………………………………………51
參考文獻 ……………………………………………………………57
[1] S. Lefebvre, L. Burglen, J. Frezal, A. Munnich, and J. Melki, The role of the SMN gene in proximal spinal muscular atrophy. Hum Mol Genet 7 (1998) 1531-6.
[2] P. Ludvigsson, E. Olafsson, and W.A. Hauser, Spinal muscular atrophy. Incidence in Iceland. Neuroepidemiology 18 (1999) 265-9.
[3] J. Pearn, Classification of spinal muscular atrophies. Lancet 1 (1980) 919-22.
[4] T.L. Munsat, and K.E. Davies, International SMA consortium meeting. (26-28 June 1992, Bonn, Germany). Neuromuscul Disord 2 (1992) 423-8.
[5] S. Lefebvre, L. Burglen, S. Reboullet, O. Clermont, P. Burlet, L. Viollet, B. Benichou, C. Cruaud, P. Millasseau, M. Zeviani, and et al., Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80 (1995) 155-65.
[6] L.M. Brzustowicz, T. Lehner, L.H. Castilla, G.K. Penchaszadeh, K.C. Wilhelmsen, R. Daniels, K.E. Davies, M. Leppert, F. Ziter, D. Wood, and et al., Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature 344 (1990) 540-1.
[7] C.L. Lorson, E. Hahnen, E.J. Androphy, and B. Wirth, A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96 (1999) 6307-11.
[8] U.R. Monani, C.L. Lorson, D.W. Parsons, T.W. Prior, E.J. Androphy, A.H. Burghes, and J.D. McPherson, A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8 (1999) 1177-83.
[9] M. Gennarelli, M. Lucarelli, F. Capon, A. Pizzuti, L. Merlini, C. Angelini, G. Novelli, and B. Dallapiccola, Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients. Biochem Biophys Res Commun 213 (1995) 342-8.
[10] Y.J. Jong, J.G. Chang, S.P. Lin, T.Y. Yang, J.C. Wang, C.P. Chang, C.C. Lee, H. Li, H.M. Hsieh-Li, and C.H. Tsai, Analysis of the mRNA transcripts of the survival motor neuron (SMN) gene in the tissue of an SMA fetus and the peripheral blood mononuclear cells of normals, carriers and SMA patients. J Neurol Sci 173 (2000) 147-53.
[11] C.L. Lorson, J. Strasswimmer, J.M. Yao, J.D. Baleja, E. Hahnen, B. Wirth, T. Le, A.H. Burghes, and E.J. Androphy, SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19 (1998) 63-6.
[12] C.L. Lorson, and E.J. Androphy, An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet 9 (2000) 259-65.
[13] L. Cartegni, and A.R. Krainer, Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30 (2002) 377-84.
[14] L. Cartegni, M.L. Hastings, J.A. Calarco, E. de Stanchina, and A.R. Krainer, Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 78 (2006) 63-77.
[15] Q. Liu, and G. Dreyfuss, A novel nuclear structure containing the survival of motor neurons protein. Embo J 15 (1996) 3555-65.
[16] U. Fischer, Q. Liu, and G. Dreyfuss, The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90 (1997) 1023-9.
[17] B. Charroux, L. Pellizzoni, R.A. Perkinson, A. Shevchenko, M. Mann, and G. Dreyfuss, Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 147 (1999) 1181-94.
[18] B. Charroux, L. Pellizzoni, R.A. Perkinson, J. Yong, A. Shevchenko, M. Mann, and G. Dreyfuss, Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 148 (2000) 1177-86.
[19] L. Campbell, K.M. Hunter, P. Mohaghegh, J.M. Tinsley, M.A. Brasch, and K.E. Davies, Direct interaction of Smn with dp103, a putative RNA helicase: a role for Smn in transcription regulation? Hum Mol Genet 9 (2000) 1093-100.
[20] G. Meister, D. Buhler, B. Laggerbauer, M. Zobawa, F. Lottspeich, and U. Fischer, Characterization of a nuclear 20S complex containing the survival of motor neurons (SMN) protein and a specific subset of spliceosomal Sm proteins. Hum Mol Genet 9 (2000) 1977-86.
[21] C. Carissimi, L. Saieva, J. Baccon, P. Chiarella, A. Maiolica, A. Sawyer, J. Rappsilber, and L. Pellizzoni, Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly. J Biol Chem 281 (2006) 8126-34.
[22] S. Baron-Delage, A. Abadie, A. Echaniz-Laguna, J. Melki, and L. Beretta, Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes. Mol Med 6 (2000) 957-68.
[23] S. Lefebvre, P. Burlet, Q. Liu, S. Bertrandy, O. Clermont, A. Munnich, G. Dreyfuss, and J. Melki, Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16 (1997) 265-9.
[24] D.D. Coovert, T.T. Le, P.E. McAndrew, J. Strasswimmer, T.O. Crawford, J.R. Mendell, S.E. Coulson, E.J. Androphy, T.W. Prior, and A.H. Burghes, The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6 (1997) 1205-14.
[25] A.L. Patrizi, F. Tiziano, S. Zappata, M.A. Donati, G. Neri, and C. Brahe, SMN protein analysis in fibroblast, amniocyte and CVS cultures from spinal muscular atrophy patients and its relevance for diagnosis. Eur J Hum Genet 7 (1999) 301-9.
[26] Q. Liu, U. Fischer, F. Wang, and G. Dreyfuss, The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90 (1997) 1013-21.
[27] G. Meister, D. Buhler, R. Pillai, F. Lottspeich, and U. Fischer, A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nat Cell Biol 3 (2001) 945-9.
[28] L. Pellizzoni, J. Yong, and G. Dreyfuss, Essential role for the SMN complex in the specificity of snRNP assembly. Science 298 (2002) 1775-9.
[29] G. Meister, and U. Fischer, Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. Embo J 21 (2002) 5853-63.
[30] W.J. Friesen, S. Paushkin, A. Wyce, S. Massenet, G.S. Pesiridis, G. Van Duyne, J. Rappsilber, M. Mann, and G. Dreyfuss, The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21 (2001) 8289-300.
[31] G. Meister, C. Eggert, and U. Fischer, SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol 12 (2002) 472-8.
[32] A.K. Gubitz, W. Feng, and G. Dreyfuss, The SMN complex. Exp Cell Res 296 (2004) 51-6.
[33] U. Narayanan, T. Achsel, R. Luhrmann, and A.G. Matera, Coupled in vitro import of U snRNPs and SMN, the spinal muscular atrophy protein. Mol Cell 16 (2004) 223-34.
[34] L. Pellizzoni, B. Charroux, J. Rappsilber, M. Mann, and G. Dreyfuss, A functional interaction between the survival motor neuron complex and RNA polymerase II. J Cell Biol 152 (2001) 75-85.
[35] J. Strasswimmer, C.L. Lorson, D.E. Breiding, J.J. Chen, T. Le, A.H. Burghes, and E.J. Androphy, Identification of survival motor neuron as a transcriptional activator-binding protein. Hum Mol Genet 8 (1999) 1219-26.
[36] M.D. Voss, A. Hille, S. Barth, A. Spurk, F. Hennrich, D. Holzer, N. Mueller-Lantzsch, E. Kremmer, and F.A. Grasser, Functional cooperation of Epstein-Barr virus nuclear antigen 2 and the survival motor neuron protein in transactivation of the viral LMP1 promoter. J Virol 75 (2001) 11781-90.
[37] M.P. Terns, and R.M. Terns, Macromolecular complexes: SMN--the master assembler. Curr Biol 11 (2001) R862-4.
[38] Z. Mourelatos, L. Abel, J. Yong, N. Kataoka, and G. Dreyfuss, SMN interacts with a novel family of hnRNP and spliceosomal proteins. Embo J 20 (2001) 5443-52.
[39] W. Rossoll, A.K. Kroning, U.M. Ohndorf, C. Steegborn, S. Jablonka, and M. Sendtner, Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 11 (2002) 93-105.
[40] T. Giesemann, S. Rathke-Hartlieb, M. Rothkegel, J.W. Bartsch, S. Buchmeier, B.M. Jockusch, and H. Jockusch, A role for polyproline motifs in the spinal muscular atrophy protein SMN. Profilins bind to and colocalize with smn in nuclear gems. J Biol Chem 274 (1999) 37908-14.
[41] W. Rossoll, S. Jablonka, C. Andreassi, A.K. Kroning, K. Karle, U.R. Monani, and M. Sendtner, Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163 (2003) 801-12.
[42] P.J. Young, P.M. Day, J. Zhou, E.J. Androphy, G.E. Morris, and C.L. Lorson, A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. J Biol Chem 277 (2002) 2852-9.
[43] B. Schrank, R. Gotz, J.M. Gunnersen, J.M. Ure, K.V. Toyka, A.G. Smith, and M. Sendtner, Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 94 (1997) 9920-5.
[44] H.M. Hsieh-Li, J.G. Chang, Y.J. Jong, M.H. Wu, N.M. Wang, C.H. Tsai, and H. Li, A mouse model for spinal muscular atrophy. Nat Genet 24 (2000) 66-70.
[45] P.E. McAndrew, D.W. Parsons, L.R. Simard, C. Rochette, P.N. Ray, J.R. Mendell, T.W. Prior, and A.H. Burghes, Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet 60 (1997) 1411-22.
[46] T. Vitali, V. Sossi, F. Tiziano, S. Zappata, A. Giuli, M. Paravatou-Petsotas, G. Neri, and C. Brahe, Detection of the survival motor neuron (SMN) genes by FISH: further evidence for a role for SMN2 in the modulation of disease severity in SMA patients. Hum Mol Genet 8 (1999) 2525-32.
[47] C. Brahe, Copies of the survival motor neuron gene in spinal muscular atrophy: the more, the better. Neuromuscul Disord 10 (2000) 274-5.
[48] B. Wirth, L. Brichta, and E. Hahnen, Spinal muscular atrophy: from gene to therapy. Semin Pediatr Neurol 13 (2006) 121-31.
[49] M. Feldkotter, V. Schwarzer, R. Wirth, T.F. Wienker, and B. Wirth, Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70 (2002) 358-68.
[50] C. Helmken, Y. Hofmann, F. Schoenen, G. Oprea, H. Raschke, S. Rudnik-Schoneborn, K. Zerres, and B. Wirth, Evidence for a modifying pathway in SMA discordant families: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1. Hum Genet 114 (2003) 11-21.
[51] J.G. Chang, H.M. Hsieh-Li, Y.J. Jong, N.M. Wang, C.H. Tsai, and H. Li, Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci U S A 98 (2001) 9808-13.
[52] L. Brichta, Y. Hofmann, E. Hahnen, F.A. Siebzehnrubl, H. Raschke, I. Blumcke, I.Y. Eyupoglu, and B. Wirth, Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12 (2003) 2481-9.
[53] C. Andreassi, C. Angelozzi, F.D. Tiziano, T. Vitali, E. De Vincenzi, A. Boninsegna, M. Villanova, E. Bertini, A. Pini, G. Neri, and C. Brahe, Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 12 (2004) 59-65.
[54] E. Hahnen, I.Y. Eyupoglu, L. Brichta, K. Haastert, C. Trankle, F.A. Siebzehnrubl, M. Riessland, I. Holker, P. Claus, J. Romstock, R. Buslei, B. Wirth, and I. Blumcke, In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J Neurochem 98 (2006) 193-202.
[55] M. Riessland, L. Brichta, E. Hahnen, and B. Wirth, The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Hum Genet 120 (2006) 101-10.
[56] A.M. Avila, B.G. Burnett, A.A. Taye, F. Gabanella, M.A. Knight, P. Hartenstein, Z. Cizman, N.A. Di Prospero, L. Pellizzoni, K.H. Fischbeck, and C.J. Sumner, Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 117 (2007) 659-71.
[57] M.R. Lunn, D.E. Root, A.M. Martino, S.P. Flaherty, B.P. Kelley, D.D. Coovert, A.H. Burghes, N.T. Man, G.E. Morris, J. Zhou, E.J. Androphy, C.J. Sumner, and B.R. Stockwell, Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism. Chem Biol 11 (2004) 1489-93.
[58] S.M. Grzeschik, M. Ganta, T.W. Prior, W.D. Heavlin, and C.H. Wang, Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells. Ann Neurol 58 (2005) 194-202.
[59] C. Andreassi, J. Jarecki, J. Zhou, D.D. Coovert, U.R. Monani, X. Chen, M. Whitney, B. Pollok, M. Zhang, E. Androphy, and A.H. Burghes, Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet 10 (2001) 2841-9.
[60] M.L. Zhang, C.L. Lorson, E.J. Androphy, and J. Zhou, An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA. Gene Ther 8 (2001) 1532-8.
[61] E.C. Wolstencroft, V. Mattis, A.A. Bajer, P.J. Young, and C.L. Lorson, A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels. Hum Mol Genet 14 (2005) 1199-210.
[62] R.G. Miller, D.H. Moore, V. Dronsky, W. Bradley, R. Barohn, W. Bryan, T.W. Prior, D.F. Gelinas, S. Iannaccone, J. Kissel, R. Leshner, J. Mendell, M. Mendoza, B. Russman, F. Samaha, and S. Smith, A placebo-controlled trial of gabapentin in spinal muscular atrophy. J Neurol Sci 191 (2001) 127-31.
[63] A.C. Tzeng, J. Cheng, H. Fryczynski, V. Niranjan, T. Stitik, A. Sial, Y. Takeuchi, P. Foye, M. DePrince, and J.R. Bach, A study of thyrotropin-releasing hormone for the treatment of spinal muscular atrophy: a preliminary report. Am J Phys Med Rehabil 79 (2000) 435-40.
[64] M. Kinali, E. Mercuri, M. Main, F. De Biasia, A. Karatza, R. Higgins, L.M. Banks, A.Y. Manzur, and F. Muntoni, albuterol. Neurology 59 (2002) 609-10.
[65] E. Mercuri, E. Bertini, S. Messina, A. Solari, A. D''Amico, C. Angelozzi, R. Battini, A. Berardinelli, P. Boffi, C. Bruno, C. Cini, F. Colitto, M. Kinali, C. Minetti, T. Mongini, L. Morandi, G. Neri, S. Orcesi, M. Pane, M. Pelliccioni, A. Pini, F.D. Tiziano, M. Villanova, G. Vita, and C. Brahe, Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy. Neurology 68 (2007) 51-5.
[66] C.C. Weihl, A.M. Connolly, and A. Pestronk, Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy. Neurology 67 (2006) 500-1.
[67] S.R. Lim, and K.J. Hertel, Modulation of survival motor neuron pre-mRNA splicing by inhibition of alternative 3'' splice site pairing. J Biol Chem 276 (2001) 45476-83.
[68] N.K. Singh, N.N. Singh, E.J. Androphy, and R.N. Singh, Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26 (2006) 1333-46.
[69] L.A. Skordis, M.G. Dunckley, B. Yue, I.C. Eperon, and F. Muntoni, Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc Natl Acad Sci U S A 100 (2003) 4114-9.
[70] M. Grimmler, L. Bauer, M. Nousiainen, R. Korner, G. Meister, and U. Fischer, Phosphorylation regulates the activity of the SMN complex during assembly of spliceosomal U snRNPs. EMBO Rep 6 (2005) 70-6.
[71] H. Lee, G. Al Shamy, Y. Elkabetz, C.M. Schoefield, N.L. Harrsion, G. Panagiotakos, N.D. Socci, V. Tabar, and L. Studer, Directed differentiation and transplantation of human embryonic stem cell derived motoneurons. Stem Cells (2007). [Epub ahead of print]
[72] C.J. DiDonato, R.J. Parks, and R. Kothary, Development of a gene therapy strategy for the restoration of survival motor neuron protein expression: implications for spinal muscular atrophy therapy. Hum Gene Ther 14 (2003) 179-88.
[73] M. Azzouz, T. Le, G.S. Ralph, L. Walmsley, U.R. Monani, D.C. Lee, F. Wilkes, K.A. Mitrophanous, S.M. Kingsman, A.H. Burghes, and N.D. Mazarakis, Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest 114 (2004) 1726-31.
[74] J.C. Lesbordes, C. Cifuentes-Diaz, A. Miroglio, V. Joshi, T. Bordet, A. Kahn, and J. Melki, Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy. Hum Mol Genet 12 (2003) 1233-9.
[75] H. Haddad, C. Cifuentes-Diaz, A. Miroglio, N. Roblot, V. Joshi, and J. Melki, Riluzole attenuates spinal muscular atrophy disease progression in a mouse model. Muscle Nerve 28 (2003) 432-7.
[76] C. Grondard, O. Biondi, A.S. Armand, S. Lecolle, B. Della Gaspera, C. Pariset, H. Li, C.L. Gallien, P.P. Vidal, C. Chanoine, and F. Charbonnier, Regular exercise prolongs survival in a type 2 spinal muscular atrophy model mouse. J Neurosci 25 (2005) 7615-22.
[77] J. Jarecki, X. Chen, A. Bernardino, D.D. Coovert, M. Whitney, A. Burghes, J. Stack, and B.A. Pollok, Diverse small-molecule modulators of SMN expression found by high-throughput compound screening: early leads towards a therapeutic for spinal muscular atrophy. Hum Mol Genet 14 (2005) 2003-18.
[78] L. Xu, and J.T. Zhang, [Effect and mechanism of securinine on synaptic transmission in the dentate gyrus of anesthetized rats]. Yao Xue Xue Bao 36 (2001) 565-8.
[79] X. Lin, and Z. Jun-Tian, Neuroprotection by D-securinine against neurotoxicity induced by beta-amyloid (25-35). Neurol Res 26 (2004) 792-6.
[80] N.Z. Dong, Z.L. Gu, W.H. Chou, and C.Y. Kwok, Securinine induced apoptosis in human leukemia HL-60 cells. Zhongguo Yao Li Xue Bao 20 (1999) 267-70.
[81] H. Tatematsu, M. Mori, T.H. Yang, J.J. Chang, T.T. Lee, and K.H. Lee, Cytotoxic principles of Securinega virosa: virosecurinine and viroallosecurinine and related derivatives. J Pharm Sci 80 (1991) 325-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文