跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏霖
研究生(外文):Chen, Po-Lin
論文名稱:摻雜式PMMA感光高分子的製備及其在體積全像資訊儲存上的特性研究
論文名稱(外文):Preparation and Characterization of Volume Holographic Data Storage by using the Doped PMMA Photopolymers
指導教授:許根玉林烜輝
指導教授(外文):Hsu, Ken-YuhLin, Shiuan-Huei
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:108
中文關鍵詞:摻雜式感光高分子體積全像全像資訊儲存偏振全像記錄雙波長全像記錄
外文關鍵詞:Doped photopolymerPhenanthrenequinoneVolume hologramVolume Holographic Data StoragePolarization holographic recordingTwo-color holographic recording
相關次數:
  • 被引用被引用:4
  • 點閱點閱:459
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要致力於發展一種具低光致收縮效應的摻雜式PMMA感光高分子材料,並且探討它在體積全像資訊儲存上的特性表現。首先我們闡述材料之設計概念,以及如何製備出PQ/PMMA 體積全像記錄塊材,並以不同的光學實驗來探討所製備材料在體積全像資料儲存上特別重要的的特性,包含光學特性、動態儲存範圍、材料敏感度和曝光後尺度穩定性…等性質,進一步以多工儲存技術在厚塊材中儲存多張影像並且重建之,由清晰無扭曲的影像品質可看出曝光收縮量很小。根據寡單體之光聚合擴散模型,可預測材料所記錄的體積全像具有暗反應自我顯影之特性,並且經過後曝光處理可定影。
為了彌補PQ/PMMA 之動態範圍和敏感度先天上的不足,因此我們提出兩種改善全像記錄特性的方法:(1)在PQ 分子結構上導入它種官能基團,試圖影響其光反應速度以改變材料之全像特性。(2)摻雜它種壓克力型單體與MMA 分子形成共聚合高分子基底,藉由高反應性與多反應端點之殘存單體來提升光反應物種間的結合能力。實驗結果顯示,染料加入長鏈烷基之推電子官能基團以及摻雜多反應端點壓克力單體之共聚合系統,可較有效地改善材料之動態範圍與敏感度。
最後,我們發展了PQ/PMMA 更獨特的全像記錄行為,即偏振全像與雙波長全像記錄,對於2mm 厚樣品的特性分析結果顯示:(1)在514nm 線偏光誘發下可引發約1.2×10-5 的雙折射率變化;若以正交圓偏光記錄偏振全像,繞射效率可到達40%,從布拉格選擇率可看出全像光柵幾乎沒有收縮。最後展示以偏振多工方式儲存與重建全像光學圖案。(2)利用光閘光源(325nm 紫光)/寫入光源(647nm 紅光)的雙波長記錄架構,可成功地在材料上記錄全像;在有光閘光源開啟下,可增加104 倍的紅光材料敏感度與繞射效率,其最高繞射效率約4%。上述之偏振全像、可延伸記錄波長(紅光或紅外光)以及選擇性記錄特性都表示PQ/PMMA 在做為體積全像的繞射與濾波元件的應用上,具有更多的想像空間和潛力。
In this dissertation, we focus on the holographic characterization of the doped PMMA photopolymer for volume holographic data storage. First of all, we elaborate the design strategy and preparation technique to fabricate a photopolymer with low photochemical shrinkage, called phenanthrenequinone doped poly(methylmethacrylate) (PQ/PMMA). The high-priority material requirements for holographic data storage, including optical characteristics, dynamic range (M#), sensitivity and photo-induced dimensional stability, are investigated on it. An experimental demonstration of multiple storage of digital data pages with non-distorted readout is presented. Based on the diffusion model of holographic recording in PQ/PMMA, the recoded volume holograms are predicted to be self-developed in dark and fixed by optical exposure.
These results indicate that the PQ/PMMA can be considered as a promisingmaterial for volume holographic data storage application. However, the related characterization of PQ/PMMA such as dynamic range and sensitivity still need to be improved. From our previous research on physical mechanism of holographic recording in PQ/PMMA, the refractive index modulation between the bright and dark zones of interference patterns, is attributed to the adduct of one PQ molecule with one MMA molecule in the bright zone. Therefore, we proposed two methods to improve the holographic characteristics of the material:
(1) By introducing different functional groups on the side-chain of PQ molecule, the holographic characteristics of the material can be modified. We found that, by selecting appropriate functional groups, an improvement in sensitivity and M# for holographic data storage can be achieved.
(2) By co-doping different acrylate-based monomer in the PMMA matrix, holographic characteristics of the material can also be modified. We anticipated that the co-doped multi-acrylate /highly reactive monomers can enhance the combination ability of monomer molecules with PQ radicals, as well as the sensitivity and M#.
Further, we found that the planar structure of PQ molecules dispersed in amorphous PMMA polymer possessed the photo induced anisotropy with linear polarized light. The resulting photo-induced birefringence in a 2-mm thick sample is measured by a phase-modulated ellipsometry, which can reaches 1.2 x10-5 by linearly polarized beam at 514 nm. We have also performed volume polarization holographic recording with two different polarization configurations. The experimental results show that with circular polarization configuration, the maximal diffraction efficiency of hologram can reach ~40%. A clear sinc-squared Bragg selectivity curve has been obtained so that the shrinkage is not a suspect in our PQ/PMMA photopolymer. The capability of multiplexing polarization holograms in our PQ/PMMA samples is also tested. These results suggest our PQ/PMMA can be attractive candidate for permanent volume polarization holographic recording.
Due to the negligible shrinkage effect and good long-term stability of PQ/PMMA photopolymer, it is suitable to record the volume holographic hologram as narrow-bandwidth filter for optical communication and bio-sensing application. Unfortunately, the material can be used at only a limited spectral range shorter than 550 nm. In terms of chemical formula, the PQ is a-diketone based derivatives so that using the same idea proposed by Brauchle et al., it is possible to perform two-wavelength recording. Then, we investigated the two-wavelength holographic recording in 2-mm thick PQ/PMMA. The hologram was recorded at 647 nm in the sample with gating by an additional laser at 325 nm, significant 104-fold increase in material sensitivity and diffraction efficiency is achieved. The maximal diffraction efficiency can reach ~4%. In addition, Bragg selectivity curve and ability for image reconstruction is demonstrated in a 2-mm thick sample supporting further applications as recording media for volume holographic device with extended spectral response and selective recording property.
一、緒論…...........................1
1.1 前言…..........................................1
1.2 全像儲存與多工原理..............................2
1.2.1 全像術簡介....................................2
1.2.2 多重儲存技術–體積全像術……4
1.2.3 數位資料儲存和重建技術……………4
1.2.4 發展體積全像儲存的關鍵問題.....................5
1.3 體積全像記錄材料的要求..........6
1.4 全像記錄材料.....8
1.4.1 光聚合系統.....................................9
1.4.2 光交鏈系統.................................10
1.4.3 高分子摻雜系統................12
1.4.4 其他系統.……..............15
1.5 章節內容簡介與摘要….....16
參考文獻…................................18
二、PQ/PMMA感光高分子在體積全像儲存上的特性研究.........23
2.1前言........................23
2.2 PQ/PMMA感光高分子材料........................24
2.2.1 材料製備…............................25
2.2.2 樣品之光學特性........................................27
2.3 PQ/PMMA感光高分子的全像記錄模型..............29
2.3.1 擴散模型..............................................30
2.3.2 全像記錄之數值模擬結果.....................33
2.3.3 摻雜式感光高分子的暗反應與定影.....34
2.4 全像資訊儲存特性分析....................................37
2.4.1 樣品的全像記錄參數量測方法.................37
2.4.2 實驗結果....................................40
2.5 小結...........................................43
參考文獻......................................................44
三、改善PQ/PMMA高分子材料之全像記錄特性研究.........48
3.1 前言...................................................48
3.2 摻雜PQ衍生物為光敏感劑的感光高分子之全像特性研究..49
3.2.1 材料組成與製備...............................50
3.2.2 紫外光-可見光(UV-VIS)光譜量測..........51
3.2.3 質譜(Mass)量測............................52
3.2.4 全像多工記錄量測...................................55
3.3.5 PQ1/PMMA樣品的的全像資訊儲存特性分析........57
3.3 摻雜丙烯酸酯類型單體的感光高分子之全像特性研究.....60
3.3.1 材料組成與改良式製程.................................60
3.3.2 質譜(Mass)量測.....................................61
3.3.3 全像多工記錄量測.............................63
3.3.4 記錄全像長時間穩定性......................65
3.4 小結.......................................68
參考文獻...............................70
第四章 PQ/PMMA感光高分子作為全像偏振光柵之特性研究........71
4.1 前言.............................................71
4.2 PQ/PMMA感光高分子的偏振全像記錄........................72
4.2.1 光致雙折射特性…............72
4.2.2 偏振全像的折射率調變................74
4.2.3 偏振全像的記錄模式....................................75
4.2.4 偏振全像的讀取...................................79
4.3 偏振全像記錄量測......................................80
4.3.1 單一偏振全像記錄...........................81
4.3.2全像多工記錄量測.....................................83
4.3.2全像多工影像實驗...................................85
4.4 小結.............................................89
參考文獻..........90
第五章 PQ/PMMA感光高分子之雙波長全像記錄特性....92
5.1 前言.....................92
5.2 雙波長全像記錄原理..........................94
5.3 記錄樣品之光學特性............................97
5.3.1 光閘光源之選擇 .................97
5.3.2 寫入光源之選擇..............................98
5.3.3 光閘和寫入光源之光致吸收實驗................99
5.4 全像記錄實驗方法..................................100
5.5 實驗結果...........................................101
5.5.1 光閘光源對材料敏感度的影響......101
5.5.2 光閘開關實驗.......102
5.5.3 布拉格選擇率實驗........103
5.5.4 全像光學圖案記錄實驗................104
5.6 小結......................105
參考文獻...........................................107
第一章
1. R. A. Lessard and G. Manivannan: Proc. SPIE - Holographic Materials 2405, 2-23 (1995).
2. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Letts. 18, 915-917 (1993).
3. P. Gunter, J. P. Huignard Ed., “Photorefractive materials and their applications I,” Springer Verlag 61, Berlin (1988).
4. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 11, 2994-2995 (1972).
5. C. P. Yang, S. H. Lin, M. L. Hsieh, K. Y. Hsu and T. C. Hsieh, “A holographic memory for digital data storage,” Int’l J. of High Speed Electronics & Systems 8, 749-765 (1997).
6. P. J. van Heerden, “Theory of Optical Information Storage in Solids,” Appl. Opt. 2, 393-400 (1963).
7. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 -2947 (1969).
8. P. Hariharan, Optical Holography: Principles, techniques, and applications, Cambridge, New York, 45-68, 1996.
9. G. W. Burr, “Doctoral Dissertation: Volume Holographic Storage Using the 90°Geometry,” California Institute of Technology, Pasadena, Calif.(1996).
10. H. J. Coufal, D. Psaltis, G. T. Sincerbox: Holographic Data Storage, Springer, New York, 101-109 (2000).
11. L. Hesselink, S. S. Orlov and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
12. R. A. Lessard y G. Manivannan, “Holographic Recording Materials: An Overwiew,” Proc. SPIE 2405, 2-23 (1995).
13. N. Sadlej, B. Smolinska, “Stable photo-sensitive polymer layers for holography,” Opt. Laser Technol.7, 175-179 (1975)
14. S. Calixto, “Dry polymer for holographic recording,” Appl. Opt. 26, 3904-3910 (1987)
15. B. L. Booth, “Photopolymer Material for Holography,” Appl. Opt. 14, 593-601 (1975).
16. K. Curtis and D. Psaltis, “Characterization of the DuPont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396-5399 (1994).
17. R. T. Ingwall and M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer ,” Opt. Eng. 28, 586-591 (1989).
18. D. A. Waldman, H. Y. S. Li and E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. SPIE 3291, 89-103 (1998).
19. A. Fimia, N. Lopez and F. Mateos, “Acrylamide photopolymers for use in real-time holography: Improving energetic sensitivity,” Proc. SPIE 1732, 105-109 (1992)
20. T. A. Shankoff, “Phase Holograms in Dichromated Gelatin,” Appl. Opt. 7, 2101- 2105 (1968)
21. C. Solano, R. A. Lessard and P. C. Roberge, “Red sensitivity of dichromated gelatin films,” Appl. Opt. 24, 1189-1192 (1985).
22. C. Solano, R. A. Lessard and P. C. Roberge, “Methylene blue sensitized gelatin as a photosensitive medium for conventional and polarizing holography,” Appl. Opt. 26, 1989-1997 (1987).
23. N. Capolla and R. A. Lessard, “Processing of holograms recorded in methylene blue sensitized gelatin,” Appl. Opt. 27, 3008-3012 (1988).
24. N. Capolla, R. A. Lessard, C. Carre and D. J. Lougnot, “Studies of the photoreduction of methylene blue in gelatin solutions and films with a view to improving the holographic recording process at 633 nm,” Appl. Phys.B 52, 326-330 (1991).
25. J. Blyth, “Methylene blue sensitized dichromated gelatin holograms: a new electron donor for their improved photosensitivity,” Appl. Opt. 30, 1598-1602 (1991).
26. C. Pizzocaro, C. Lafond and M. Bolte, “Dichromated poly(vinyl alcohol): key role of chromium(V) in the properties of the photosensitive material,” J. Photoch. Photobio. A 151, 221-228 (2002).
27. G. Manivannan, G. Mailhot, M. Bolte and R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845-857 (1994),.
28. G. Manivannan, R. Changkakoti and R. A. Lessard, “Cr(VI) and Fe(III) doped polymer systems as real-time hologrphic recording materials,” Opt. Eng. 32, 671-676 (1993).
29. G. Manivannan, R. Changkakoti and R. A. Lessard, “Metal ion doped polymers as media for optical memories,” Polym. Adv. Tech. 4, 569-576 (1993).
30. Sh. D. Kakichashvili, “ On polarization recording of holograms,” Opt. Spektrosk. 33, 324-327 (1972).
31. T. Todorov, L. Nikolova, N. Tomova and V. Dragostinova, “ Photoinduced anisotrpy in rigid dye solutions transient polarization holography,” IEEE J. Quantum Electron. QE-22, 1262-1267 (1986).
32. H. Taunaumang, M. Solyga, M. O. Tija, et al., “ On the efficient mixed amplitude and phase grating recording in vacuum deposited Disperse Red 1,” Thin Solid Films 461, 316-324 (2004).
33. Y. J. Zhang, Z. F. Lu, X. F. Deng, et al., “ Holographic grating recorded by He–Ne laser operating at 632.8 nm in polymer film containing push–pull azo dye,” Opt. Commun. 220, 289-295 (2003).
34. Y. Zhao, S. Y. Bai, K. Asatryan, et al., “Holographic recording in a photoactive elastomer,” Adv. Funct. Mater. 13, 781-788 (2003).
35. M. J. Kim, C. Chun, T. Nakayama, et al., “ Absorption wavelength dependent photodynamic motions in donor–acceptor type of azobenzene polymer films,” Jpn. J. Appl. Phys. 45, L169-171 (2006).
36. S. C. Fu, Y. C. Liu, L. Dong, et al., “Photo-dynamics of polarization holographic recording in spirooxazine-doped polymer films,” Mater. Lett. 59, 1449-1452 (2005).
37. V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Img. Sci. Tech. 41, 371-382 (1997).
38. C. S. Paik, H. Morawetz, “Photochemical and thermal isomerization of azoaromatic residues in the side chains and the backbone of polymers in bulk,” Marcomolecules 5, 171-177 (1972).
39. R. M. Tejedor, M. Millaruelo, L. Oriol, et al., “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674-1680 (2006).
40. S. Ghosh, G. O. Carlisle, “Carbon nanotube enhanced diffraction efficiency in dye-doped liquid crystal,” J. Mater. Sci-Mater. 16, 753-759 (2005).
41. K. Okano, A. Shishido, T. Ikeda, et al., “ Synthesis and properties of highly birefringent azo-tolane liquid-crystalline polymers: effect of the position of the tolane moiety in the side chain,” Mol. Cryst. Liq. Cryst. 441, 275-285 (2005).
42. Z. Chen, A. Lewis, H. Takei and I. Nebenzahl, “Bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium,” Appl. Opt. 30, 5188-5196 (1991).
43. G. S. He, C. J. Wung, G. C. Xu and Paras N. Prasad, “Two-dimensional optical grating produced on a poly-p-phenylene vinylene/V2O5-gel film by ultrashort pulsed laser radiation,” Appl. Opt. 30, 3810-3817 (1991).
44. V. I. Sukhanov, A. M. Kursakova, S. A. Kuchinsky, et al., “Sol-gel porous glass as holographic medium,” J. Sol-Gel Sci. Tech. 8, 1111-1114 (1997).
45. P. Judeinstein, P. W. Oliveira, H. Krug, et al., “Photochromic organic-inorganic nanocomposites as holographic storage media,” Adv. Mater. Opt. Electro. 7, 123-133 (1997).
46. I. G. Marine, D. Bersani and P. P. Lottici, “Holographic gratings in DR1-doped sol-gel silica and ORMOSILs thin films,” Opt. Mater. 15, 279-284 (2001).
47. S. Kucharski and R. Janik, “Photochromic gratings in sol-gel films containing diazo sulfonamide chromophore,” Opt. Mater. 27, 1637-1641 (2005).
48. L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, and A. Fimia, “Acrylamide-N, N’-methylenebisacrylamide silica glass holographic recording material,” Opt. Express 12, 1780-1787 (2004).
49. B. Plagemann, F. R. Graf, S. B. Altner, et al., “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67-74 (1998).
50. A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin and D. Psaltis, “Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications,” J. Lumi. 86, 399-405 (2000).
51. A. V. Turukhin, R. S. Pandher, A. A. Gorokhovsky, Z. Liu, et al., “Spectroscopy, persistent hole burning, and holographic applications of naphtophthalocyanine /haloanthracene systems,” J. Lumin. 98, 207-212 (2002).
52. A. Bloom, R. A. Bartolini, P. L. K. Hung, “The effect of polymer host on volume phase holographic recording properties,” Polym. Eng. Sci. 17, 356-358 (1977).
53. A. Bloom, R. A. Bartolini, D. L. Ross, “Organic recording medium for volumephase holography,” Appl. Phy. Lett. 24, 612-614 (1974).
54. R. A. Bartolini, A. Bloom, and H. A. Weakliem, “Volume holographic recording characteristics of an organic medium,” Appl. Opt. 15, 1261-1265 (1976).
55. Y. L. Freilich, M. Levy and S. Reich, “Chemical changes in polymeric photodielectric media used in holographic recording,” J. Polym. Sci. Chem. Ed. 15, 1811-1818 (1977).
56. A. A. Friesem, Z. Rav-Noy and S. Reich, “Photodielectric polymer for holographic recording,” Appl. Opt. 16, 427- (1977).
第二章
1. F. H. Mok, M. C. Tackitt and H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605-607 (1991).
2. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage, Springer, New York, 2000.
3. L. K. Anderson, “Holographic optical memory for bulk data storage,” Bell Lab. Rec. 45, 319-326 (1968).
4. J. Heanue, M. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
5. D. Psaltis and F. H. Mok, “Holographic memories,” Sci. Am. 273, 70-76 (1995).
6. M. L. Hsieh and K. Y. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40, 2125-2133 (2001).
7. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disk,” Appl. Opt. 35, 2389-2391 (1996).
8. V. L. Colvin, R. G. Larson, A. Haris and M. L. Shilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5914-5923 (1997).
9. H. Ono, T. Tamoto, A. Emoto and N. Kawatsuki, “Holographic recording in photoreactive monomer/polymer composites,” Jap. J. Appl. Phys. 44, 1783-1788 (2005).
10. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, et al., “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
11. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969).
12. H. Franke, “Optical recording of refractive-index patterns in dope poly-(methyl methacrylate) flms,” Appl. Opt. 23, 2729-2733 (1984).
13. C. Carre and D. J. Lougnot, “Photopolymers for holographic recording : from standard to self-processing materials,” J. Phys. (Paris) III 3, 1445-1460 (1993).
14. R. A. Lessard and G. Manivannan, “Holographic Redording Materials: An Overview,” Proc. SPIE 2405, 2-23 (1995).
15. D. A. Waldman, H. Y. S. Li and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imag. Sci. Tech. 41, 497-514 (1997).
16. D. A. Waldman, H. Y. S. Li and E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. SPIE 3291, 89-103 (1998).
17. J. Steckman, I. Solomatine, G. Zhou and D. Psaltis, “Characterization of phenanthrenequinone-doped poly (methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310-1312 (1998).
18. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487-489 (1999).,
19. M. L. Schilling, V. L. Colvin, L. Dhar, et al., “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
20. P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490-1492 (2001).
21. K. Y. Hsu, “Holographic data storage using photopolymer,” Proc. SPIE 3801, 66-74 (1999).
22. S. H. Lin, K. Y. Hsu, W. Z. Chen and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
23. S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao and K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Non. Opt. Phys. Mater. 15, 239-252 (2006).
24. Y. N. Shiao, W. T. Whang and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenquinone doped poly(methyl methacrylate) hybrid Materials,” Opt. Eng. 43, 1993-2002 (2004).
25. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
26. S. Campbell, S. H. Lin, X. Yi and P. C. Yeh, “Absorption effects in photorefractive volume-holographic memory systems. I. Beam depletion,” J. Opt. Soc. Am. B 13, 2209-2217 (1996).
27. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, pp1929-1939 (1994).
28. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 28, 1108-1114 (2000).
29. 林俊華,「PQ:PMMA感光高分子的體積全像儲存特性研究」,國立交通大學,碩士論文,民國92年。
30. S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, et al., “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 17, 2833-2843 (2011).
31. J. H. Kwon, H. C. Hwang and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651-1657 (1999).
32. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
33. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan et al., “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express. 13, 6990-7004 (2005).
34. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu et al., “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrylate) materials,” Opt. Comm. 194, 103-108 (2001).
35. A. V. Veniaminov, E. Bartsch and A. P. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectr. (USSR) 99, 744-750 (2005).
36. 陳威整,「PMMA/PQ感光高分子材料的製備與特性研究及其在光資訊儲存上的應用」,國立交通大學,碩士論文,民國88年。
37. 蕭義男,「以PQ為光吸收的感光高分子材料在全像儲存上的製備與特性研究」,國立交通大學,碩士論文,民國89年。
38. A. V. Veniaminov, O. V. Bandyuk and O. V. Andreeva, “Materials with diffusion amplification for optical-information recording and their study by a holographic method,” J. Opt. Technol. 75, 306-310 (2008).
39. U.V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A: Pure Appl. Opt. 10, 085302 (2008).
40. F. Mok, G. Burr and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-898 (1996).
41. K. Y. Hsu and S. H. Lin, “Holographic data storage using photopolymer,” Proc. SPIE 5206, 142-148 (2003).
42. H. Gunther, R. Macfarlane, Y. Furukawa, K. Kitamura and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611- 7623 (1998).
第三章
1. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrylate) materials,” Opt.Commun. 194, 103-108 (2001).
2. S. Farid, D. Hess, G. Pfundt, K. H. Scholz, and G. Steffan, “Photoreactions of o-quinones with olefins: a new type of reaction leading to dioxole derivatives,” Chem. Com. 434, 638-639 (1968).
3. S. Farid, “Photoreactions of o-quinones with olefins: mechanism of the 1, 4-cycloaddition,” Chem. Com. 14, 1268-1269 (1967).
4. S. H. Lin, P. L. Chen, Y. N. Hsiao and W. T. Whang, “Fabrication and Characterization of poly (methyl methacrylate) photopolymer doped with 9,10-Phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Comm. 281, 559-566 (2008).
5. S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao and K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Non. Opt. Phys. Mater. 15, 239-252 (2006).
6. L. G. Wade, Organic Chemistry, Prentice Hall International, London, 1999 (Chapter4).
7. Y. N. Shiao, W. T. Whang and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenquinone doped poly(methyl methacrylate) hybrid Materials,” Opt. Eng. 43, 1993-2002 (2004).
8. A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
9. S. H. Lin, P. L. Chen and J. H. Lin, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48, 035802 1-7 (2009).
第四章
1. L. Nikolova and P. S. Ramanujam, Polarization Holography, (Cambridge University Press, 2009), Chap. 6.
2. T. Huang and K. H. Wagner, “Photoanisotropic incoherent-to-coherent optical conversion,” Appl. Opt., 32, 1888-1900 (1993).
3. L. L. Nedelchev, A. S. Matharu, S. Hvilsted, and P. S. Ramanujam, “Photoinduced Anisotropy in a Family of Amorphous Azobenzene Polyesters for Optical Storage,” Appl. Opt. 42, 5918–5927 (2003).
4. D. Baradaa, Y. Kawagoe, H. Sekiguchi, T. Fukud, S. Kawata, and T. Yatagai, “Volume polarization holography for optical data storage,” Proc. of SPIE 7957, 79570Q-1-5 (2011).
5. S. Bian. and M. G. Kuzyk, “Real-time holographic reflection gratings in volume media of azo-dye-doped poly(methyl methacrylate),” Opt. Lett. 27, 1761-1763 (2002).
6. A. S. Matharu, S. Jeeva, and P. Ramanujam, “Liquid crystals for holographic optical data storage,” Chem. Soc. Rev. 36, 1868-1880 (2007).
7. T. Huang and K. H. Wagner, “Coupled mode analysis of polarization volume hologram,” IEEE J. Quant. Electro. 31, 372-390, (1995).
8. P.-A. Blanche, Ph.C. Lemaire, C. Maertens, P. Dubois, R. Jerome, “Polarization holography reveals the nature of the grating in polymers containing azo-dye,” Opt. Commun. 185, 1-12 (2000).
9. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilster, P.S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835-3840 (1996).
10. A. V. Veniaminov O. V. Bandyuk, and O. V. Andreeva, “Materials with diffusion amplification for optical-information recording and their study by a holographic method,” J. Opt. Technol. 75, 306-310 (2008).
11. A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828-1837 (1999).
12. A. V. Trofimova, A. I. Stankevich and V. V. Mogilnyi, “Phenanthrenequinone -polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectro. 76, 585-591 (2009).
13. S. H. Lin, P. L. Chen, C. I. Chuang, Y. F. Chao and K.Y. Hsu, “Volume polarization holographic recording in thick phenanthrenequinonedoped-doped poly(methyl methacrylate) photopolymer,” Opt. Lett. 36, 3039-3241 (2011).
14. C. I. Chuang, Y. N. Hsiao, S. H. Lin, Y. F. Chao, “Real-time measurement of photo-induced effects in 9,10-phenanthrenequinonedoped poly(methyl methacrylate) photopolymer by phase-modulated ellipsometry,” Opt. Commun. 283, 3279-3283 (2010).
15. H. Ono, A. Emoto, N. Kawatsuki and T. Hasegawa, “Multiplex diffraction from functionalized polymer liquid crystals and polarization conversion,” Opt. Express 19, 2379-2384 (2003).
16. H. Ono, A. Emoto, N. Kawatsuki, F. Takahashi, N. Kawatsuki and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298-1303 (2003).
17. D. A. Waldman, H. -Y. S. Li and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497-514 (1997).
第五章
57. http://www.sigmaaldrich.com/taiwan.html
58. A. S. Dvornikov, I. Cokgor, M. Wang, F. B. Jr. McCormick, S. C. Esener, P. M. Rentzepis, “Materials and systems for two photon 3-D ROM devices,” IEEE Transactions on components, packaging and manufacturing technology-Part A, 20, 203-212 (1997).
59. R. R. Naik, L. L. Brott, F. Rodriguez, G. Agarwal, S. M. Kirkpatrick and M. O. Stone, “Bio-inspired approaches and biologically derived materials for coatings,” Progress in Organic Coatings 47, 249-255 (2003).
60. G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proceedings of the IEEE 87, 2098-2120 (1999).
61. G. C. Bjorklund, Chr. Bruchle, D. M. Burland, D. C. Alvarez, “Two-photon holography with continuous-wave lasers,” Opt. Lett. 6, 159-161 (1980).
62. C. Bruchle, U. P. Wild, D. M. Burland, G. C. Bjorklund, and D. C.Alvarez, “Two-photon holographic recording with continuous-wave lasers in the 750-1100-nm range,” Opt. Lett. 7, 177-179 (1982).
63. V. Gerbig, R. K. Grygier, D. M. Burland, and G. Sincerbox, “Near-infrared holography by two-photon photochemistry,” Opt. Lett. 8, 404-406 (1983).
64. G. C. Bjorklund, D. M. Burland, D. C. Alvarez, “A holographic technique for investigating photochemical reactions,” J. Chen. Phys. 73, 4321-4328 (1980).
65. K. Hirabayashi, H. Kanbara, Y. Mori, T. Kurihara, M. Shimizu and T. Hiyama, “ Multilayer holographic recording using a two-color-absorption photopolymer,” Appl. Opt. 46, 8402-8410 (2007).
66. S. H. Lin, K. Y. Hsu, W. Z. Chen and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
67. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
68. S. H. Lin, Y.-N. Hsiao, P.-L. Chen and K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Non. Opt. Phys. Mats. 15, 239-247 (2006).
69. P. L. Chen, S. L. Cho, J. H. Lin, S. H. Lin, K. Y. Hsu and S. Chi, “Two wavelength holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate) photopolymer,” Opt. Eng. Lett. 51, to be published (2012).
70. G. Bjrk, J. Sderholm, L. L. Sanchez-Soto: J. Opt. B-Quant. Semi. Opts. 6, S478 (2004).
71. W. Heisenberg, The Physical Principles of Quantum Theory, Translated by Carl Eckart and F. C. Hoyt, Chicago, 1930.
72. D. E. Damschen, C. D. Merritt, D. L. Perry, G. W. Scott and L. D. Talley, “Intersystem crossing kinetics of aromatic ketones in the condensed phase,” J. Phys. Chem. 82, 2268-2272 (1978).
73. J. C. Dalton and N. J. Turro, “Photoreactivity of n,π* excited states of alkyl ketones,” Annual Review of Physical Chemistry 21, 499-560 (1970).
74. J. Chilton, L. Giering, and C. Steel, “The effect of transient photoproducts in benzophenone-hydrogen donor systems,” J. Am. Chem. Soc. 98, 1865-1870 (1976).
75. A. Singh, A. R. Scott, F. Sopchyshyn, “Flash photolysis of camphorquinone and biacetyl,” J. Phys. Chem. 73, 2633-2643 (1969).
76. R. G. W. Norrish and G. Porter, “Chemical Reactions Produced by Very High Light Intensities,” Nature 164, 658 (1949).
77. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell System Tech. J. 48, 2909-2947 (1969).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top