第一章
1. R. A. Lessard and G. Manivannan: Proc. SPIE - Holographic Materials 2405, 2-23 (1995).
2. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Letts. 18, 915-917 (1993).
3. P. Gunter, J. P. Huignard Ed., “Photorefractive materials and their applications I,” Springer Verlag 61, Berlin (1988).
4. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 11, 2994-2995 (1972).
5. C. P. Yang, S. H. Lin, M. L. Hsieh, K. Y. Hsu and T. C. Hsieh, “A holographic memory for digital data storage,” Int’l J. of High Speed Electronics & Systems 8, 749-765 (1997).
6. P. J. van Heerden, “Theory of Optical Information Storage in Solids,” Appl. Opt. 2, 393-400 (1963).
7. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909 -2947 (1969).
8. P. Hariharan, Optical Holography: Principles, techniques, and applications, Cambridge, New York, 45-68, 1996.
9. G. W. Burr, “Doctoral Dissertation: Volume Holographic Storage Using the 90°Geometry,” California Institute of Technology, Pasadena, Calif.(1996).
10. H. J. Coufal, D. Psaltis, G. T. Sincerbox: Holographic Data Storage, Springer, New York, 101-109 (2000).
11. L. Hesselink, S. S. Orlov and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
12. R. A. Lessard y G. Manivannan, “Holographic Recording Materials: An Overwiew,” Proc. SPIE 2405, 2-23 (1995).
13. N. Sadlej, B. Smolinska, “Stable photo-sensitive polymer layers for holography,” Opt. Laser Technol.7, 175-179 (1975)
14. S. Calixto, “Dry polymer for holographic recording,” Appl. Opt. 26, 3904-3910 (1987)
15. B. L. Booth, “Photopolymer Material for Holography,” Appl. Opt. 14, 593-601 (1975).
16. K. Curtis and D. Psaltis, “Characterization of the DuPont photopolymer for three-dimensional holographic storage,” Appl. Opt. 33, 5396-5399 (1994).
17. R. T. Ingwall and M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer ,” Opt. Eng. 28, 586-591 (1989).
18. D. A. Waldman, H. Y. S. Li and E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. SPIE 3291, 89-103 (1998).
19. A. Fimia, N. Lopez and F. Mateos, “Acrylamide photopolymers for use in real-time holography: Improving energetic sensitivity,” Proc. SPIE 1732, 105-109 (1992)
20. T. A. Shankoff, “Phase Holograms in Dichromated Gelatin,” Appl. Opt. 7, 2101- 2105 (1968)
21. C. Solano, R. A. Lessard and P. C. Roberge, “Red sensitivity of dichromated gelatin films,” Appl. Opt. 24, 1189-1192 (1985).
22. C. Solano, R. A. Lessard and P. C. Roberge, “Methylene blue sensitized gelatin as a photosensitive medium for conventional and polarizing holography,” Appl. Opt. 26, 1989-1997 (1987).
23. N. Capolla and R. A. Lessard, “Processing of holograms recorded in methylene blue sensitized gelatin,” Appl. Opt. 27, 3008-3012 (1988).
24. N. Capolla, R. A. Lessard, C. Carre and D. J. Lougnot, “Studies of the photoreduction of methylene blue in gelatin solutions and films with a view to improving the holographic recording process at 633 nm,” Appl. Phys.B 52, 326-330 (1991).
25. J. Blyth, “Methylene blue sensitized dichromated gelatin holograms: a new electron donor for their improved photosensitivity,” Appl. Opt. 30, 1598-1602 (1991).
26. C. Pizzocaro, C. Lafond and M. Bolte, “Dichromated poly(vinyl alcohol): key role of chromium(V) in the properties of the photosensitive material,” J. Photoch. Photobio. A 151, 221-228 (2002).
27. G. Manivannan, G. Mailhot, M. Bolte and R. A. Lessard, “Xanthene dye sensitized dichromated poly(vinyl alcohol) recording materials: holographic characterization and ESR spectroscopic study,” Pure Appl. Opt. 3, 845-857 (1994),.
28. G. Manivannan, R. Changkakoti and R. A. Lessard, “Cr(VI) and Fe(III) doped polymer systems as real-time hologrphic recording materials,” Opt. Eng. 32, 671-676 (1993).
29. G. Manivannan, R. Changkakoti and R. A. Lessard, “Metal ion doped polymers as media for optical memories,” Polym. Adv. Tech. 4, 569-576 (1993).
30. Sh. D. Kakichashvili, “ On polarization recording of holograms,” Opt. Spektrosk. 33, 324-327 (1972).
31. T. Todorov, L. Nikolova, N. Tomova and V. Dragostinova, “ Photoinduced anisotrpy in rigid dye solutions transient polarization holography,” IEEE J. Quantum Electron. QE-22, 1262-1267 (1986).
32. H. Taunaumang, M. Solyga, M. O. Tija, et al., “ On the efficient mixed amplitude and phase grating recording in vacuum deposited Disperse Red 1,” Thin Solid Films 461, 316-324 (2004).
33. Y. J. Zhang, Z. F. Lu, X. F. Deng, et al., “ Holographic grating recorded by He–Ne laser operating at 632.8 nm in polymer film containing push–pull azo dye,” Opt. Commun. 220, 289-295 (2003).
34. Y. Zhao, S. Y. Bai, K. Asatryan, et al., “Holographic recording in a photoactive elastomer,” Adv. Funct. Mater. 13, 781-788 (2003).
35. M. J. Kim, C. Chun, T. Nakayama, et al., “ Absorption wavelength dependent photodynamic motions in donor–acceptor type of azobenzene polymer films,” Jpn. J. Appl. Phys. 45, L169-171 (2006).
36. S. C. Fu, Y. C. Liu, L. Dong, et al., “Photo-dynamics of polarization holographic recording in spirooxazine-doped polymer films,” Mater. Lett. 59, 1449-1452 (2005).
37. V. Weiss, A. A. Friesem, V. A. Krongauz, “Organic materials for real-time holographic recording,” J. Img. Sci. Tech. 41, 371-382 (1997).
38. C. S. Paik, H. Morawetz, “Photochemical and thermal isomerization of azoaromatic residues in the side chains and the backbone of polymers in bulk,” Marcomolecules 5, 171-177 (1972).
39. R. M. Tejedor, M. Millaruelo, L. Oriol, et al., “Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers,” J. Mater. Chem. 16, 1674-1680 (2006).
40. S. Ghosh, G. O. Carlisle, “Carbon nanotube enhanced diffraction efficiency in dye-doped liquid crystal,” J. Mater. Sci-Mater. 16, 753-759 (2005).
41. K. Okano, A. Shishido, T. Ikeda, et al., “ Synthesis and properties of highly birefringent azo-tolane liquid-crystalline polymers: effect of the position of the tolane moiety in the side chain,” Mol. Cryst. Liq. Cryst. 441, 275-285 (2005).
42. Z. Chen, A. Lewis, H. Takei and I. Nebenzahl, “Bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium,” Appl. Opt. 30, 5188-5196 (1991).
43. G. S. He, C. J. Wung, G. C. Xu and Paras N. Prasad, “Two-dimensional optical grating produced on a poly-p-phenylene vinylene/V2O5-gel film by ultrashort pulsed laser radiation,” Appl. Opt. 30, 3810-3817 (1991).
44. V. I. Sukhanov, A. M. Kursakova, S. A. Kuchinsky, et al., “Sol-gel porous glass as holographic medium,” J. Sol-Gel Sci. Tech. 8, 1111-1114 (1997).
45. P. Judeinstein, P. W. Oliveira, H. Krug, et al., “Photochromic organic-inorganic nanocomposites as holographic storage media,” Adv. Mater. Opt. Electro. 7, 123-133 (1997).
46. I. G. Marine, D. Bersani and P. P. Lottici, “Holographic gratings in DR1-doped sol-gel silica and ORMOSILs thin films,” Opt. Mater. 15, 279-284 (2001).
47. S. Kucharski and R. Janik, “Photochromic gratings in sol-gel films containing diazo sulfonamide chromophore,” Opt. Mater. 27, 1637-1641 (2005).
48. L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, and A. Fimia, “Acrylamide-N, N’-methylenebisacrylamide silica glass holographic recording material,” Opt. Express 12, 1780-1787 (2004).
49. B. Plagemann, F. R. Graf, S. B. Altner, et al., “Exploring the limits of optical storage using persistent spectral hole-burning: holographic recording of 12000 images,” Appl. Phys. B 66, 67-74 (1998).
50. A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin and D. Psaltis, “Spectral hole burning in naphthalocyanines derivatives in the region 800 nm for holographic storage applications,” J. Lumi. 86, 399-405 (2000).
51. A. V. Turukhin, R. S. Pandher, A. A. Gorokhovsky, Z. Liu, et al., “Spectroscopy, persistent hole burning, and holographic applications of naphtophthalocyanine /haloanthracene systems,” J. Lumin. 98, 207-212 (2002).
52. A. Bloom, R. A. Bartolini, P. L. K. Hung, “The effect of polymer host on volume phase holographic recording properties,” Polym. Eng. Sci. 17, 356-358 (1977).
53. A. Bloom, R. A. Bartolini, D. L. Ross, “Organic recording medium for volumephase holography,” Appl. Phy. Lett. 24, 612-614 (1974).
54. R. A. Bartolini, A. Bloom, and H. A. Weakliem, “Volume holographic recording characteristics of an organic medium,” Appl. Opt. 15, 1261-1265 (1976).
55. Y. L. Freilich, M. Levy and S. Reich, “Chemical changes in polymeric photodielectric media used in holographic recording,” J. Polym. Sci. Chem. Ed. 15, 1811-1818 (1977).
56. A. A. Friesem, Z. Rav-Noy and S. Reich, “Photodielectric polymer for holographic recording,” Appl. Opt. 16, 427- (1977).
第二章
1. F. H. Mok, M. C. Tackitt and H. M. Stoll, “Storage of 500 high-resolution holograms in a LiNbO3 crystal,” Opt. Lett. 16, 605-607 (1991).
2. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage, Springer, New York, 2000.
3. L. K. Anderson, “Holographic optical memory for bulk data storage,” Bell Lab. Rec. 45, 319-326 (1968).
4. J. Heanue, M. Bashaw and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
5. D. Psaltis and F. H. Mok, “Holographic memories,” Sci. Am. 273, 70-76 (1995).
6. M. L. Hsieh and K. Y. Hsu, “Grating detuning effect on holographic memory in photopolymers,” Opt. Eng. 40, 2125-2133 (2001).
7. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disk,” Appl. Opt. 35, 2389-2391 (1996).
8. V. L. Colvin, R. G. Larson, A. Haris and M. L. Shilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5914-5923 (1997).
9. H. Ono, T. Tamoto, A. Emoto and N. Kawatsuki, “Holographic recording in photoreactive monomer/polymer composites,” Jap. J. Appl. Phys. 44, 1783-1788 (2005).
10. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, et al., “Holographic volume gratings in glass-like polymer material,” Appl. Phys. B 82, 299-302 (2006).
11. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969).
12. H. Franke, “Optical recording of refractive-index patterns in dope poly-(methyl methacrylate) flms,” Appl. Opt. 23, 2729-2733 (1984).
13. C. Carre and D. J. Lougnot, “Photopolymers for holographic recording : from standard to self-processing materials,” J. Phys. (Paris) III 3, 1445-1460 (1993).
14. R. A. Lessard and G. Manivannan, “Holographic Redording Materials: An Overview,” Proc. SPIE 2405, 2-23 (1995).
15. D. A. Waldman, H. Y. S. Li and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imag. Sci. Tech. 41, 497-514 (1997).
16. D. A. Waldman, H. Y. S. Li and E. A. Cetin, “Holographic recording properties in thick films of ULSH-500 photopolymer,” Proc. SPIE 3291, 89-103 (1998).
17. J. Steckman, I. Solomatine, G. Zhou and D. Psaltis, “Characterization of phenanthrenequinone-doped poly (methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310-1312 (1998).
18. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487-489 (1999).,
19. M. L. Schilling, V. L. Colvin, L. Dhar, et al., “Acrylate oligomer-based photopolymers for optical storage applications,” Chem. Mater. 11, 247-254 (1999).
20. P. Cheben and M. L. Calvo, “A photopolymerizable glass with diffraction efficiency near 100% for holographic storage,” Appl. Phys. Lett. 78, 1490-1492 (2001).
21. K. Y. Hsu, “Holographic data storage using photopolymer,” Proc. SPIE 3801, 66-74 (1999).
22. S. H. Lin, K. Y. Hsu, W. Z. Chen and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
23. S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao and K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Non. Opt. Phys. Mater. 15, 239-252 (2006).
24. Y. N. Shiao, W. T. Whang and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenquinone doped poly(methyl methacrylate) hybrid Materials,” Opt. Eng. 43, 1993-2002 (2004).
25. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
26. S. Campbell, S. H. Lin, X. Yi and P. C. Yeh, “Absorption effects in photorefractive volume-holographic memory systems. I. Beam depletion,” J. Opt. Soc. Am. B 13, 2209-2217 (1996).
27. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, pp1929-1939 (1994).
28. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 28, 1108-1114 (2000).
29. 林俊華,「PQ:PMMA感光高分子的體積全像儲存特性研究」,國立交通大學,碩士論文,民國92年。30. S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, et al., “Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 17, 2833-2843 (2011).
31. J. H. Kwon, H. C. Hwang and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651-1657 (1999).
32. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
33. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan et al., “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express. 13, 6990-7004 (2005).
34. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu et al., “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrylate) materials,” Opt. Comm. 194, 103-108 (2001).
35. A. V. Veniaminov, E. Bartsch and A. P. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectr. (USSR) 99, 744-750 (2005).
36. 陳威整,「PMMA/PQ感光高分子材料的製備與特性研究及其在光資訊儲存上的應用」,國立交通大學,碩士論文,民國88年。37. 蕭義男,「以PQ為光吸收的感光高分子材料在全像儲存上的製備與特性研究」,國立交通大學,碩士論文,民國89年。38. A. V. Veniaminov, O. V. Bandyuk and O. V. Andreeva, “Materials with diffusion amplification for optical-information recording and their study by a holographic method,” J. Opt. Technol. 75, 306-310 (2008).
39. U.V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A: Pure Appl. Opt. 10, 085302 (2008).
40. F. Mok, G. Burr and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-898 (1996).
41. K. Y. Hsu and S. H. Lin, “Holographic data storage using photopolymer,” Proc. SPIE 5206, 142-148 (2003).
42. H. Gunther, R. Macfarlane, Y. Furukawa, K. Kitamura and R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611- 7623 (1998).
第三章
1. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrylate) materials,” Opt.Commun. 194, 103-108 (2001).
2. S. Farid, D. Hess, G. Pfundt, K. H. Scholz, and G. Steffan, “Photoreactions of o-quinones with olefins: a new type of reaction leading to dioxole derivatives,” Chem. Com. 434, 638-639 (1968).
3. S. Farid, “Photoreactions of o-quinones with olefins: mechanism of the 1, 4-cycloaddition,” Chem. Com. 14, 1268-1269 (1967).
4. S. H. Lin, P. L. Chen, Y. N. Hsiao and W. T. Whang, “Fabrication and Characterization of poly (methyl methacrylate) photopolymer doped with 9,10-Phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Comm. 281, 559-566 (2008).
5. S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao and K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Non. Opt. Phys. Mater. 15, 239-252 (2006).
6. L. G. Wade, Organic Chemistry, Prentice Hall International, London, 1999 (Chapter4).
7. Y. N. Shiao, W. T. Whang and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenquinone doped poly(methyl methacrylate) hybrid Materials,” Opt. Eng. 43, 1993-2002 (2004).
8. A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
9. S. H. Lin, P. L. Chen and J. H. Lin, “Phenanthrenequinone-doped copolymers for holographic data storage,” Opt. Eng. 48, 035802 1-7 (2009).
第四章
1. L. Nikolova and P. S. Ramanujam, Polarization Holography, (Cambridge University Press, 2009), Chap. 6.
2. T. Huang and K. H. Wagner, “Photoanisotropic incoherent-to-coherent optical conversion,” Appl. Opt., 32, 1888-1900 (1993).
3. L. L. Nedelchev, A. S. Matharu, S. Hvilsted, and P. S. Ramanujam, “Photoinduced Anisotropy in a Family of Amorphous Azobenzene Polyesters for Optical Storage,” Appl. Opt. 42, 5918–5927 (2003).
4. D. Baradaa, Y. Kawagoe, H. Sekiguchi, T. Fukud, S. Kawata, and T. Yatagai, “Volume polarization holography for optical data storage,” Proc. of SPIE 7957, 79570Q-1-5 (2011).
5. S. Bian. and M. G. Kuzyk, “Real-time holographic reflection gratings in volume media of azo-dye-doped poly(methyl methacrylate),” Opt. Lett. 27, 1761-1763 (2002).
6. A. S. Matharu, S. Jeeva, and P. Ramanujam, “Liquid crystals for holographic optical data storage,” Chem. Soc. Rev. 36, 1868-1880 (2007).
7. T. Huang and K. H. Wagner, “Coupled mode analysis of polarization volume hologram,” IEEE J. Quant. Electro. 31, 372-390, (1995).
8. P.-A. Blanche, Ph.C. Lemaire, C. Maertens, P. Dubois, R. Jerome, “Polarization holography reveals the nature of the grating in polymers containing azo-dye,” Opt. Commun. 185, 1-12 (2000).
9. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilster, P.S. Ramanujam, “Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy,” Appl. Opt. 35, 3835-3840 (1996).
10. A. V. Veniaminov O. V. Bandyuk, and O. V. Andreeva, “Materials with diffusion amplification for optical-information recording and their study by a holographic method,” J. Opt. Technol. 75, 306-310 (2008).
11. A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828-1837 (1999).
12. A. V. Trofimova, A. I. Stankevich and V. V. Mogilnyi, “Phenanthrenequinone -polymethylmethacrylate composite for polarization phase recording,” J. Appl. Spectro. 76, 585-591 (2009).
13. S. H. Lin, P. L. Chen, C. I. Chuang, Y. F. Chao and K.Y. Hsu, “Volume polarization holographic recording in thick phenanthrenequinonedoped-doped poly(methyl methacrylate) photopolymer,” Opt. Lett. 36, 3039-3241 (2011).
14. C. I. Chuang, Y. N. Hsiao, S. H. Lin, Y. F. Chao, “Real-time measurement of photo-induced effects in 9,10-phenanthrenequinonedoped poly(methyl methacrylate) photopolymer by phase-modulated ellipsometry,” Opt. Commun. 283, 3279-3283 (2010).
15. H. Ono, A. Emoto, N. Kawatsuki and T. Hasegawa, “Multiplex diffraction from functionalized polymer liquid crystals and polarization conversion,” Opt. Express 19, 2379-2384 (2003).
16. H. Ono, A. Emoto, N. Kawatsuki, F. Takahashi, N. Kawatsuki and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298-1303 (2003).
17. D. A. Waldman, H. -Y. S. Li and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497-514 (1997).
第五章
57. http://www.sigmaaldrich.com/taiwan.html
58. A. S. Dvornikov, I. Cokgor, M. Wang, F. B. Jr. McCormick, S. C. Esener, P. M. Rentzepis, “Materials and systems for two photon 3-D ROM devices,” IEEE Transactions on components, packaging and manufacturing technology-Part A, 20, 203-212 (1997).
59. R. R. Naik, L. L. Brott, F. Rodriguez, G. Agarwal, S. M. Kirkpatrick and M. O. Stone, “Bio-inspired approaches and biologically derived materials for coatings,” Progress in Organic Coatings 47, 249-255 (2003).
60. G. Barbastathis and D. J. Brady, “Multidimensional tomographic imaging using volume holography,” Proceedings of the IEEE 87, 2098-2120 (1999).
61. G. C. Bjorklund, Chr. Bruchle, D. M. Burland, D. C. Alvarez, “Two-photon holography with continuous-wave lasers,” Opt. Lett. 6, 159-161 (1980).
62. C. Bruchle, U. P. Wild, D. M. Burland, G. C. Bjorklund, and D. C.Alvarez, “Two-photon holographic recording with continuous-wave lasers in the 750-1100-nm range,” Opt. Lett. 7, 177-179 (1982).
63. V. Gerbig, R. K. Grygier, D. M. Burland, and G. Sincerbox, “Near-infrared holography by two-photon photochemistry,” Opt. Lett. 8, 404-406 (1983).
64. G. C. Bjorklund, D. M. Burland, D. C. Alvarez, “A holographic technique for investigating photochemical reactions,” J. Chen. Phys. 73, 4321-4328 (1980).
65. K. Hirabayashi, H. Kanbara, Y. Mori, T. Kurihara, M. Shimizu and T. Hiyama, “ Multilayer holographic recording using a two-color-absorption photopolymer,” Appl. Opt. 46, 8402-8410 (2007).
66. S. H. Lin, K. Y. Hsu, W. Z. Chen and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
67. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
68. S. H. Lin, Y.-N. Hsiao, P.-L. Chen and K. Y. Hsu, “Doped poly(methyl methacrylate) photopolymers for holographic data storage,” J. Non. Opt. Phys. Mats. 15, 239-247 (2006).
69. P. L. Chen, S. L. Cho, J. H. Lin, S. H. Lin, K. Y. Hsu and S. Chi, “Two wavelength holographic recording in thick phenanthrenequinone-doped poly(methyl methacrylate) photopolymer,” Opt. Eng. Lett. 51, to be published (2012).
70. G. Bjrk, J. Sderholm, L. L. Sanchez-Soto: J. Opt. B-Quant. Semi. Opts. 6, S478 (2004).
71. W. Heisenberg, The Physical Principles of Quantum Theory, Translated by Carl Eckart and F. C. Hoyt, Chicago, 1930.
72. D. E. Damschen, C. D. Merritt, D. L. Perry, G. W. Scott and L. D. Talley, “Intersystem crossing kinetics of aromatic ketones in the condensed phase,” J. Phys. Chem. 82, 2268-2272 (1978).
73. J. C. Dalton and N. J. Turro, “Photoreactivity of n,π* excited states of alkyl ketones,” Annual Review of Physical Chemistry 21, 499-560 (1970).
74. J. Chilton, L. Giering, and C. Steel, “The effect of transient photoproducts in benzophenone-hydrogen donor systems,” J. Am. Chem. Soc. 98, 1865-1870 (1976).
75. A. Singh, A. R. Scott, F. Sopchyshyn, “Flash photolysis of camphorquinone and biacetyl,” J. Phys. Chem. 73, 2633-2643 (1969).
76. R. G. W. Norrish and G. Porter, “Chemical Reactions Produced by Very High Light Intensities,” Nature 164, 658 (1949).
77. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell System Tech. J. 48, 2909-2947 (1969).