跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/07 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀科衡
研究生(外文):Ke-Heng Chi
論文名稱:玉米生長和抗氧化防禦系統對酸性逆境的反應
論文名稱(外文):Responses of Growth and Antioxidant Defense System of Corn to the Acid Stress
指導教授:朱德民朱德民引用關係
指導教授(外文):Teh-Ming Chu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:108
中文關鍵詞:幼苗生長氧化傷害發芽率酸性逆境
外文關鍵詞:acid stressgermination rateoxidative damageseedling growth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:500
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本試驗主要在於探討人工模擬酸性逆境對玉米種子發芽及三葉期幼苗生長兩個生育階段的影響。
將玉米種子以不同pH值分別為2.0、2.5、3.0、4.0、5.0和5.5之酸性溶液處理,進行發芽試驗,結果顯示pH 2.5和2.0酸性溶液明顯抑制種子發芽、胚根和芽鞘的生長。此外,pH 2.5的酸性逆境明顯抑制發芽種子α-amylase活性、澱粉分解、蔗糖和葡萄糖的合成;種子中並累積較多的H2O2和 MDA。由上述結果推測,在酸性逆境下發芽種子發生過氧化作用,造成氧化傷害,結果抑制α-amylase活性,導致澱粉分解受阻,進而阻礙玉米種子正常的發芽。
玉米三葉期幼苗分別以pH 2.0、2.5、3.0、4.0、5.0和5.5之酸性溶液處理,結果顯示pH 2.5和2.0酸性溶液抑制株高的生長、根部及地上部的乾物重和相對生長速率。在pH 2.5酸性逆境下,幼苗葉片葉綠素含量明顯減少,但葉綠素a/b比值並無明顯改變;pH 2.5酸性逆境下葉片葉綠素螢光釋放量較高,顯示光合作用受抑制;此外,幼苗葉片細胞發生大量離子滲漏,顯示葉片細胞之原生質膜受損。在pH 2.5酸性逆境下葉片和根部的H2O2和MDA含量均提高,顯示植株發生過氧化作用及氧化傷害;另一方面,葉片和根部抗氧化防禦系統呈現Asc含量下降、APx活性降低、GSH含量增加、GSH/GSSG比值提高和GR活性增加的反應趨勢。由上述試驗結果推測,酸性逆境可造成植物發生過氧化作用及氧化傷害,進而引起葉片光化學活性降低,葉綠素含量減少,細胞原生質膜及胞內膜系受損,導致葉片提早老化,乾物質合成減少,最後影響幼苗的生長。
The purpose of this experiment is to explore the effect of stimulated acid stress on germination and V3-seedling growth of maize.
Maize seeds were treated with acid solutions of different pH values, i.e. 2.0, 2.5, 3.0, 4.0, 5.0, and 5.5, respectively. The results showed that the acid solutions of pH 2.5 and 2.0 had a significant decrease in germination rate, radicle and coleoptile growth. In addition, the acid stress of pH 2.5 decreased significantly in α-amylase activity, starch decomposition, glucose and sucrose synthesis in germinating seeds; also accumulated more H2O2 and MDA. It postulated that under acid stress the germinating seeds suffered from oxidative damage, and then resulted in the decrease of α-amylase activity and starch decomposition. Consequently, the germination was depressed.
V3-seedlings of maize were treated with acid solutions of different pH values, i.e. 2.0, 2.5, 3.0, 4.0, 5.0, and 5.5, respectively. The results showed that acid solutions of pH 2.5 and 2.0 had a significant depression to the plant height, dry weight and RGR of roots as well as above-ground parts. Under the acid stress of pH 2.5, the chlorophyll content in seedling leaves decreased, however, the ratio of chlorophyll a/b didn’t show a significant change. Under acid stress of pH 2.5, the leaf maintaining a higher release of the chlorophyll fluorescence indicated that the photosynthesis of seedling was inhibited. The acid stress of pH 2.5 also induced a greater ion leakage. A serious peroxidation and oxidative damage had been obserbed in the maize seedling as subjected to acid stress of pH 2.5. Antioxidant defense system had also been tested. Asc content and APx activity decreased, whereas GSH content, GSH/GSSG ratio, and GR activity were increased in both leaves and roots of seedling. Based on the aboved results, it’s concluded that peroxidation and oxidative damage can be occurred under the acid stress, and induce photochemical activity depression, chlorophyll loss, membrane permeability increase, premature senescence of leaves, and dry matter synthesis inhibition, subsequently the growth of seedling was depressed.
中文摘要…………………………………………………………… i
英文摘要…………………………………………………………… ii
目錄………………………………………………………………… iii
表目錄……………………………………………………………… iv
圖目錄……………………………………………………………… v
縮寫字……………………………………………………………… vii
緒言………………………………………………………………… 1
前人研究…………………………………………………………… 4
材料與方法………………………………………………………… 20
結果………………………………………………………………… 32
第一部分:酸性逆境對玉米種子發芽之影響…………………… 32
試驗一:不同pH值酸性溶液對玉米種子發芽之影響…………… 32
試驗二:酸性逆境對玉米發芽種子澱粉分解之影響…………… 40
試驗三:酸性逆境造成玉米發芽種子的氧化傷害……………… 44
第二部分:酸性逆境對玉米三葉期幼苗生長之影響…………… 49
試驗一:不同pH值酸性溶液對玉米幼苗根部及地上部生長之影響…………………………………………………………………… 49
試驗二:酸性逆境對玉米幼苗光合作用和葉片老化之影響…… 56
試驗三:酸性逆境對幼苗葉片氧化傷害及抗氧化反應………… 62
試驗四:酸性逆境對幼苗根部氧化傷害及抗氧化反應………… 73
討論………………………………………………………………… 88
參考文獻…………………………………………………………… 98
吳昌祐。1998。淹水逆境對甘藷生長與光合產物合成、轉運及分配之影響。國立中興大學農藝學系博士論文。台中。台灣。
吳義林、鄭福田。2000。台灣地區酸沉降物質現況調查。行政院環保署期未報告。台北:行政院環境保護署。
林訓仕。2005。水稻微芽之誘導分化及其對除草劑之耐性。國立中興大學農藝學系碩士論文。台中。台灣。
張文東。2000。浸水逆境下玉米幼苗植株過氧化作用與抗氧化系統的反應。國立中興大學農藝學系博士論文。台中。台灣。
郭鴻裕、朱戩良、劉滄棽、江志峰。1996。本省農田土壞表土酸鹼值及有機質含量之變化趨勢。土壞肥料通訊 56:1-4。
郭鴻裕。1992。台灣地區酸性土壤之分布及其利用現況。”酸性土壤之特性及改良研討會論文集”,pp. 3-1 to 3-7。中華民國土壤肥料學會。
Andrew, C. S. 1976. Effect of calcium, pH and nitrogen on the growth and chemical composition of some tropical and temperate pasture legumes. Ⅰ. Nodulation and growth. Aust. J. Agric. Res. 27:611-623.
Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399.
Aro, E. -M., I. Virgin, and B. Andersson. 1993. Photoinhibition of photosystem Ⅱ. Inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143:113-134.
Arora, R. G., R. K. Sairam, and G. C. Srivastava. 2002. Oxidative stress and antioxidative system in plants. Curr. Sci. 82:1221-1235.
Asada, K. 1994. Production and action of activated oxygen species in photosynthetic tissues. In “Causes of photooxidative stress and amelioration of defence systems on plants”, ed. C. H. Foyer and P. M. Mullineux, pp. 77-104. Boca Raton, Fl, USA: CRC Press.
Asada, K. 1996. Radical production and scavenging in the chloroplasts. In “Photosynthesis and the environment”, ed. N. R. Baker, pp. 128-150. Dordrecht, The Netherlands: Kluwer Academic Publisher.
Asada, K. 1999. The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:601-639.
Bailly, C. 2004. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14:93-107.
Banwart, W. L., P. M. Porter, J. J. Hassett, and W. M. Walker. 1987. SAR effects on yield response of two corn cultivars. Agron. J. 79:497-501.
Banwart, W. L., R. L. Finke, P. M. Porter, and J. J. Hassett. 1990. Sensitivity of twenty soybean cultivars to simulated acid rain. J. Environ. Qual. 19:339-346.
Bartoli, C. G., F. Gómez, D. E. Martínez, and Guiamet, J. J. 2004. Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J. Exp. Bot. 55:1663-1669.
Bergmann, L. and W. Rennenberg. 1993. Glutathione metabolism in plants. In “Sulfur nutrition and assimilation in higher plants”, ed. L. J. De Kok, pp. 109-123. The Hugue, The Netherlands: SPB Academic Publishing bv.
Berlett, B. S. and E. R. Stadtman. 1997. Protein oxidation in aging, disease and oxidative stress. J. Biol. Chem. 272:20313-20316.
Bewley, J. D. and M. Black. 1994. Seeds: Physiology of development and germination. 2nd ed. New York and London: Plenum Press. pp. 1-31.
Bhattacharjee, S. and A. K. Mukherjee. 2004. Heavy metal induced germination and early growth impairment in Amaranthus lividus L.: Implications of oxidative membrane damage. J. Plnat Biol. 31:1-11.
Biehler, K and H. Fock. 1996. Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol. 112:265-272.
Bligny, R., E. Gout, W. Kaiser, U. Heber, D. Walker, and R. Douce. 1997. pH regulation in acid-stressed leaves of pea plants grown in the presence of nitrate or ammonium salts:studies involving 31P-NMR spectroscopy and chlorophyll fluorescence. Biochim. Biophys. Acta 1320:142-152.
Blokhina, O., E. Virolainen, and K. V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress. Ann. Bot. 91:179-194.
Bolwell, G. P. and P. Woftastek. 1997. Mechanism for the generation of reactive oxygen species in plant defense – Broad perspective. Physiol. Mol. Plant. Pathol. 51:347-349.
Bolwell, G. P., L.V. Bindschedler, K. A. Blee, V. S. Butt, D. R. Davies, S. L. Gardner, C. Gerrish, and F. Minibayeva. 2002. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot. 53:1367–1376.
Bowler, C., M. Van Montagu, and D. Inzé. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116.
Bowler, C., W. Van Camp, M. Montagu, and D. Inzé. 1994. Superoxide dismutase in plants. CRC Crit. Rev. Plant Sci. 13:199-210.
Braidot, E., E. Petrussa, A. Vianello, and F. Macri. 1999. Hydrogen peroxide generation by higher plant mitochondria oxidizing complex Ⅰor complex Ⅱsubstrates. FEBS Lett. 451:347-350.
Cooper, H. B., J. M. Demo, and J. A. Lopez. 1975. Chemical composition of acid preciptiation in central Texas. In “Proceeding of 1st International symposium on acid precipitation and for ecosystem”. USDA for Serv. Gen Tech. Rep. NE-23, pp. 281-291.
Craker, L. E. and P. F. Waldron. 1989. Acid rain and seed yield reduction in corn. J. Environ. Qual. 18:127-129.
Crowe, J. H. and L. M. Crowe. 1992. Membrane integrity in anhydrobiotic organisms: toeard a mechanism for stabilizing dry seeds. In “Water and life”, ed. G. N. Somero, C. B. Osmond, and C. L. Bolis, pp. 97-103. Berlin: Springer-Verlag.
Dat, J., E. Vandenabeele, E. Vranová, M. van Montagu, D. Inzé, and F. van Breusegem. 2000. Dual action of active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57:779–795.
del Río, L. A., F. J. Corpas, L. M. Sandalio, J. M. Palma, M. Gómez, and J. B. Barroso. 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 53:1255-1272.
Dybing, E., J. R. Nelson, J. R. Mitchell, H. A. Sesame, and J. R. Gillette. 1976. Oxidation of a methyldopa and other catechols by chytochromes R450-generated superoxide anion: Possible mechanism of methyldopa hepatitis. Mol. Pharmacol. 12:911-920.
Eamus, D. and D. Fowler. 1990. Photosynthetic and stomatal conductance responses to acid mist of red spruce seedlings. Plant Cell Environ. 13:349-357.
Eamus, D. and M. B. Murray. 1993. The impact of constituent ions of acid mist on assimilation and stomatal conductance of Norway spruce prior and post midwinter freezing. Environ. Pollut. 72:23-44.
Elstner, E. F. 1987. Metabolism of activated oxygen species. In “The biochemistry of plants”, ed. D. D. Davis, pp. 253-315. San Diego: Academic Press.
Elstner, E. F. and W. Osswald. 1994. Mechanisms of oxygen activation during plant stress. Proc. Royal Soc. Edinburgh 102B:131-154.
Eshdat, Y., D. Holland, Z. Faltin, and G. Benhayyim. 1997. Plant glutathione peroxidases. Physiol. Plant. 100:234-240.
Evans, L. C. 1982. Biological effects of acidity in precipitation on vegetation: a review. Environ. Exp. Bot. 22:155-169.
Evans, L. S. 1988. Effect of acidic decomposition of vegetation: state of science. In “Perspective in environmental botany”, ed. D. N. Rao, M. Yunus, K. J. Ahmad, and S. N. Singh, pp. 73-119. New Delhi: Today and Tomorrows Printers and Publishers.
Evans, L. S. and K. F. Lewin. 1981. Growth, development and yield responses of pinto beans and soybeans to hydrogen ion concentration of simulated acidic rain. Environ. Exp. Bot. 21:103-113.
Evans, L. S., K. F. Lewin, and M. J. Patti. 1984. Effects of simulated acid rain on yields of field grown soybeans. New Phytol. 96:207-213.
Evans, L. S., K. F. Lewin, C. A. Conway, and M. J. Patti. 1981. Seed yield (quantity and quality) of field-grown soybeans exposed to simulated acid rain. New Phytol. 89:459-470.
Evans, L. S., K. F. Lewin, E. A. Cunningham, and M. J. Patti. 1983. Productivity of field grown soybeans exposed to simulated acid rain. New Phytol. 93:377-388.
Ferenbaugh, R. W. 1976. Effects of simulated acid rain on Phaseolus vulgaris L. (Fabaceae). Am. J. Bot. 63:283-288.
Ferrari-Iliou, R., A. T. Pham Thi, and J. V. da Silva. 1984. Effect of water stress on the lipid and fatty acid composition of cotton (Gossypium hirsutum) chloroplasts. Physiol. Plant. 62:219-224.
Fincher, G. B. 1989. Molecular and cellular biology associated with endosperm mobilisation in germinating cereal grains. Annu. Rev. Plant Physiol. Plant Mo1. Biol. 40:305-346.
Foyer, C. H. and G. Noctor. 2003. Redox sensing and signaling assoicated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 119:355-364.
Foyer, C. H. and J. Harbinson. 1994. Oxgen metabolism and the regulation of photosynthetic electron transport. In “Causes of photooxidative stress and amelioration of defense systems in plants”, ed. C. H. Foyer and P. M. Mullineaux, pp. 1-42. Boca Raton: CRC Press.
Foyer, C. H. and M. Lelandais. 1993. The roles of ascorbate in the regulation of photosynthesis. In “Photosynthetic responses to the environment”, ed. H. Y. Yamamoto and C. M. Smith, pp. 88-101. Rockville, Maryland: American Society of Plnat Physiologists.
Foyer, C. H., P. Descourvières, and K. J. Kunert. 1994. Protection against oxygen radicals: an important dehence mechanism studied in transgenic plants. Plant Cell Environ. 17:507-523.
Fridovich, I. 1986. Superoxide dismutases. Adv. Enzymol. Relat. Areas. Mol. Biol. 58:61-97.
Gabara, B., M. Skłodowska, A. Wyrwicka, S. Glinska, and M. Gapińska. 2003. Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. Leaves sprayed with acid rain. Plant Sci. 164:507-516.
Galloway, J. N., G. E. Likens, W. C. Keene, and J. M. Miller. 1982. The composition of precipitation in remote areas of the world. J. Geophys. Res. 89:1447-1458.
Gillham, D. J. and A. D. Dodge. 1986. Hydrogen peroxide scavenging systems in pea chloroplasts. Planta 167:246-251.
Gubler, F., R. Kalla, J. K. Roberts, and J. V. Jacobsen. 1995. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7:1879-1891.
Halliwell, B. and J. M. C. Gutteridge. 2000. Free radicals in biology and medicine. Oxford: Oxford University Press.
Hell, R., and L. Bergmann. 1990. γ-Glutamylcysteine synthetase in higher plants: Catalytic properties and subcellular localization. Planta 180:603-612.
Hideg, E., T. Kálai, K. Hideg, and I. Vass. 1998. Photoinhibition of photosynthesis in vivo results in singlet oxygen production detection via nitroxideinduced fluorescence quenching in broad bean leaves. Biochemistry 37:11405-11411.
Hindawi, I. J., J. A. Rea, and W. L. Griffis. 1980. Response of bush bean exposed to acid mist. Amer. J. Bot. 67:168-172.
Hippeli, S. and E. F. Elstner. 1996. Mechanisms of oxygen activation during plant stress: Biochemical effects of air pollutants. J. Plant Physiol. 148:249-257.
Hogan, G. D. 1992. Physioloical effects of direct impact of acidic deposition of foliage. Agriculture Ecosystems Environ. 42:307-319.
Hourmant, A., A. Pradet. 1981. Oxidative phosphorylation in germinating lettuce seeds (Lactuca sativa) during the first hour of imbibition. Plant Physiol. 68:631-635.
Humphryes, T. E. 1987. Sucrose efflux and export from the maize scutellum. Plant Cell Environ. 10:259-266.
Inada, H., M. Nagao, S. Fujikawa, and K. Arakawa. 2006. Influence of simulated acid snow stress on leaf tissure of wintering herbaceous plants. Plant Cell Physiol. 47:504-512.
Ishida, H., Y. Nishimori, M. Sugisawa, A. Makino, and T. Mae. 1997. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37 kDa and 16 kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat. Plant Cell Physiol. 38:471-479.
Ishikawa, T., K. Sakai, T. Takeda, K. Yoshimura, and S. Shigeoka. 1996. cDNA encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3-coding regions. FEBS Lett. 384:289-293.
Islam, A. K. M. S., D. G. Edwards, and C. J. Asher. 1980. pH optima for crop growth. Results of a flowing solution culture experiment with six species. Plant Soil 54:339-357.
Jacobson, J. S., L. I. Heller, K. E. Yamada, J. E. Osmeloski, T. Bethard, and J. P. Lassoie. 1990. Foliar injury and growth response of red spruce to sulfate and nitrate acid mist. Can. J. For. Res. 20:58-65.
Jiang, M. and J. Zhang. 2002. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radic. Res. 36:1001-1015.
Jiménez, A., J. A. Hernández, G. Pastori, L. A. del Río, and F. Sevilla. 1998. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plnat Physiol. 118:1327-1335.
Jiménez, A., J. A. Hernández, L. del Río, and F. Sevilla. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 114:275–284.
Johnston Jr., J. W., D. S. Shriner, C. J. Klarer, and D. M. Lodge. 1982. Effect of rain pH on senescence, growth and yield of bush bean. Environ. Exp. Bot. 22:329-337.
Kennedy, I. R. 1992. Acid soil and acid rain. 2nd ed. Taunton:Research Studies. pp. 2-6.
Khan, T. I. and S. Devpura. 2004. Physiological and biochemical effects of simulate acid rain on Phaseolus Vulgrais Var. HUR-15. Environmentalist 24:223-226.
Krasnovsky, A. A. Jr. 1998. Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies. Membr. Cell Biol. 12:665-690.
Kuittel, R. and J. Pell. 1991. Effects of drought stress and simulated acidic rain on foliar conductance of Zea mays L.. Environ. Exp. Bot. 31:79-90.
Kuźniak, E. and M. Skłodowska. 2004. The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. J. Exp. Bot. 397:605–612.
Larson, R. A. 1988. The antioxidants of higher plnats. Phytochemistry 27:969-978.
Lee, J. J., G. E. Neely, S. C. Perrigan, and L. C. Growthaus. 1981. Effects of simulated sulphuric acid rain on yield, growth and foliar injury of several crops. Environ. Exp. Bot. 21:171-185.
Lee, Y., J. Park, K. Im, K. Kim, J. Lee, K. Lee, J. A. Park, T. K. Lee, D. S. Park, J. S. Yang, D. Kim, and S, Lee. 2006. Arabidopsis leaf necrosis caused by simulated acid rain is related to the salicylic acid signaling pathway. Plant Physiol. Biochem. 44:38-42.
Lin, C. Y., Y. M. Chen, and J. L. Key. 1985. Solute leakage in soybean seedlings under various heat shock regimes. Plant Cell Physiol. 26:1493-1498.
López-Huertas, E., F. J. Corpas, L. M. Palma, and L. A. del Río. 1999. Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem. J. 337:531-536.
Mahler, R. L. and R. E. McDole. 1987. Effect of soil pH on crop yield in Northern Idaho. Agron. J. 79:751-755.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405–410.
Miyagawa, Y., M. Tamoi, and S. Shigeoka. 2000. Evaluation of the defense system in chloroplasts to photo-oxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli. Plant Cell Physiol. 41:311-320.
Miyake, C. and K. Asada. 1996. Inactivation mechanism of ascorbate peroxidase at low concentration of ascorbate; hydrogen peroxide decomposes compound I of ascorbate peroxidase. Plant Cell Physiol. 37:423-430.
Miyake, C., W. H. Cao, and K. Asada. 1993. Purification and molecular properties of the thylakoid-bound ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiol. 34:881-889.
Miyao, M. 1994. Involvement of active oxygen species in degradation of the D1 protein under strong illumination in isolated subcomplexes of photosystem II. Biochemistry 33:9722-9730.
Miyao, M., M. Ikeuchi, N. Yamamoto, and T. Ono. 1995. Specific degradation of the D1 protein of photosystem Ⅱ by treatment with hydrogen peroxide in darkness: implications for the mechanism of degradation of D1 protein under illumination. Biochemistry 34:10019-10026.
Møller, I. M. 2001. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Mol. Biol. 52:561-591.
Mozurkewich, M. and J. G. Calvert. 1988. Reaction probability of N2O5 on aqueous aerosol. J. Geophys. Res. 92:4163-4170.
Muthuchelian, K., C. Murugan, R. Harigovindan, N. Nedunchezhian, and G. Kulandaicelu. 1995. Growth, CO2-C14 fixation, activities of photosystems, ribulose-1,5-bisphosphate carboxylase and nitrate reductase in trees as affected by simulated acid rain. Biol. Plant 37:355-362.
Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867-880.
Niyogi, K. K. 2000. Safety valves for photosynthesis. Curr. Opin. Plant Biol. 3:455-460.
Noctor, G. and C. H. Foyer. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plnat Mol. Biol. 49:249-279.
Otter, T. and A. Polle. 1994. The influence of apoplastic ascorbate on the activities of cell wall-associated peroxidase and NADH oxidase in needles of Norway spruce (Picea abies L). Plnat Cell Physiol. 35:1231-1238.
Peiser, G. and S. F. Yang. 1985. Biochemical and physiological effects of SO2 on nonphotosynthetic processes in plants. In “Sulfur dioxide and vegetation: physiology, ecology, and policy issues”, ed. W. E. Winner, H. A. Mooney and R. A. Goldstein, pp. 148-161. Standford: Stanford University Press.
Polle, A. and H. Rennenberg. 1992. Field studies on Norway spruce trees at high altitude. Ⅱ. Defence systems against oxidative stress in needles. New Phytol. 121:635-642.
Puntarulo, S., M. Galleano, R. A. Sanchez, and A. Boveris. 1991. Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochim. Biophys. Ada. 1074:277-283.
Rautenkranz, A. A. F., L. Li, F. Machler, E. Martinia, and J. J. Oertli. 1994. Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel) leaves. Plant Physiol. 106:187-193.
Sattler, S. E., L. U. Gilliland, M. Magallanes-Lundback, M. Pollard, and D. DellaPenna. 2004. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419-1432.
Scandalios, J. G. 1987. Isozymes. In “Current topics in biological and medical research”, Vol. 14, ed. M. C. Rattazi, J. G. Scandalios, and G. S. Whitt, pp. 19-44. New York: Liss.
Scandalios, J. G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101:7-12.
Scandalios, J. G. 1997. Molecular genetics of superoxide dismutase in plants. In “Oxidative stress and the molecular biology of antioxidant defenses”, ed. J. G. Scandlios, pp. 527-568. New York: Cold Spring Harbor Laboratory Press.
Schubert, E., K. Mengel and S. Schubert. 1990. Soil pH and calium effect on nitrogen fixation and growth of broad bern. Agron. J. 82:969-972.
Schubert, S., E. Schubert, and K. Mengel. 1990. Effect of low pH of the root medium on proton release, growth, and nutrient uptake of field bean (Vicia faba). Plant Soil 124:239-244.
Segal, A. W. and A. Abo. 1993. The biochemical basis of NADPH oxidase of phagocytes. Trends Biochem. Sci. 18:43-47.
Seinfeld, J. H. 1986. Atmospheric chemistry and physics of air pollution. New York: Willey-Interscience.
Seinfeld, J. H. and S. N. Pandis. 1998. Atmospheric chemistry and physics -from air pollution to climate change. New York:John Wiley & Sons.
Shan, Y. F., Z. W. Feng, T. Izuta, M. Aoki, and T. Totsuka. 1996. The individual and combined effects of ozone and simulated acid-rain on growth, gas-exchange rate and water-use efficiency of Pinus armandi Franch. Environ. Pollut. 91:355-361.
Silva, L. C., M. A. Oliva, A. A. Azevedo, J. M. Araújo, and R. M. Aguiar. 2005. Micromorphological and anatomical alterations caused by simulated acid rain in restinga plants: Eugenia uniflora and Clusia hilariana. Water Air Soil Pollut. 168:129-143.
Singh, B. and M. Agrawal. 2004. Impact of simulated acid rain on growth and yield of two cultivars of wheat. Water Air Soil Pollut. 152:71-80.
Smirnoff, N. 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol. 3:229–235.
Sonoike, K. 1996. Degradation of the psaB gene product, the reaction centre subunit of photosystem Ⅰ: possible involvement of active oxygen species. Plant Sci. 115:157-164.
Sun, Z. and C. A. Henson. 1991. A quantitative assessment of the importance of barley seed α-amylase, β-amylase, debranching enzyme, and α-glucosidase in starch degradation. Arch. Biochem. Biophys. 284:298-305.
Thompson, J. E., R. L. Ledge, and R. F. Barber. 1987. The role of free radicals in senescence and wounding. New Phytol. 105:317-344.
Trümper, S., I. Follmann, and I. Häberlein. 1994. A novel dehydroascorbate reductase from spinach chloroplasts homologous to plant trypsin inhibitor. FEBS Lett. 352:159-162.
van Beusichem, M. L. 1982. Nutrient absorption by pea plants during dinitrogen fixation. 2. Effects of ambient acidity and temperature. Neth. J. Agric. Sci. 30:85-97.
van Breemen, N., J. Mulder, and C. T. Driscoll. 1984. Acidification and alkalinization of soil. Plant Soil 75:283-308.
Velikoba, V., A. Ivanova, and I. Yordanov. 2002. Changes in lipid composition of Phaseolus vulgaris leaves after simulation acid rain treatment. Bulg. J. Plant Physiol. 28:59-65.
Velikova, V., I. Yordanov, and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci. 151:59-66.
Velikova, V., I. Yordanov, M. Kurteva, and T. Tsonev. 1997. Effects of simulated acid rain on the photosynthetic characteristics of Phaseolus vulgaris L.. Photosynthetica 34:523-535.
Velikova, V., T. Tsonev, and I. Yordanov. 1999. Light and CO2 responses of photosynthesis and chlorophyll fluorescence characteristics in bean plants after simulated acid rain. Physiol. Plant. 107:77-83.
von Caemmerer, S. and G.. D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376-387.
Wilkinson, R. E. and R. R. Duncan. 1989. Sorghum seedling growth as influenced by H+, Ca2+, and Mn2+ concentrations. J. Plant Nutr. 12:1379-1394.
Willekens, H., C. Langebarteis, C. Tire, M. Van Montagu, D. Inzé, and W. Van Camp. 1994. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proc. Natl. Acad. Sci. USA 91:10450-10454.
Wise, R. R. 1995. Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth. Res. 45:79-97.
Wood, T. and F. H. Bormann. 1975. Increases in foliar leaching caused by acidification mist. Ambio. 4:169-171.
Wyrwicka, A. and M. Skłodowska. 2006. Influence of repeated acid rain treatment on antioxidative enzyme activities and on lipid peroxidation in cucumber leaves. Environ. Exp. Bot. 56:198–204.
Yamaguchi, K., H. Mori, and M. Nishimura. 1995. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol. 36:1157-1162.
Yordanov, I., T. Tsonev, V. Goltsev, L. Kruleva, and V. Velikova. 1997. Interactive effect of water deficit and height temperature on photosynthesis in sunflower and maize plants. 1. Changes in the parameters of chlorophyll fluorescence induction kinetics and fluorescence quenching. Photosynthetica 33:391-402.
Yu, J. Q., S. F. YE, and L. C. Huang. 2002. Effects of simulated acid precipitation on photosynthesis, chlorophyll fluorescence, and antioxidative enzymes in Cucumis sativus L.. Photosynthetica 40:331-335.
Zeng, Q. L., C. J. Liang, D. X. Shen, X. H. Huang, and Q. Zhou. 2004. Effects of acid rain on seed germination of various acid fastness plants. J. Agro. Environ. Sci. 23:39-42.
Ziegler, I. 1975. The effect of SO2 pollution on metabolism. Residue Rev. 56:79-105.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top