跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林旻頡
研究生(外文):Ming-Chieh Lin
論文名稱:不同有機廢棄物之蚓糞堆肥化過程中的成分特性與蚯蚓生長變化
論文名稱(外文):The changes of properties and earthworm growth in vermicomposting process with different organic wastes
指導教授:陳仁炫陳仁炫引用關係
指導教授(外文):Jen-Hshuan Chen
口試委員:譚鎮中黃裕銘鍾仁賜李達源
口試委員(外文):Chen-Chung TanYuh-Ming HuangRen-Shih ChungDar-Yuan Lee
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:80
中文關鍵詞:有機廢棄物堆肥化蚯蚓蚓糞堆肥化生長生殖
外文關鍵詞:Organic wasteCompostingEarthwormVermicompostingGrowthReproduction
相關次數:
  • 被引用被引用:8
  • 點閱點閱:1131
  • 評分評分:
  • 下載下載:300
  • 收藏至我的研究室書目清單書目收藏:1
將有機廢棄物藉由堆肥化轉換成優質堆肥,具有資源回收再利用的效果。蚓糞堆肥化與高溫好氧堆肥化是常用之堆肥化處理方式,然前人多以不同資材製成之兩類堆肥作比較。本研究之目的在於(一) 比較以相同資材經預堆兩周後,分別進行好氧堆肥化和蚓糞堆肥化處理,並分別偵測其成分特性之變化與堆肥成品之成分特性;(二) 偵測分別以三種食材在分批餵食下對蚓糞堆肥化中養分含量及蚯蚓生殖生長的影響。本試驗使用的蚯蚓為Eisenia fetida。本研究分成三個試驗,試驗一以廢棄菇包混合豬糞 (50 % : 50 % , w/w) 作為基料,預堆兩周後,分別進行好氧堆肥化與蚓糞堆肥化,偵測不同時間 (0、14與69天) 之成分特性及堆肥成品之腐熟度。結果顯示,所有處理在堆肥化過程中有機質與有機碳含量因微生物或與蚯蚓分解作用而下降,而EC、總氮、磷、鉀、鈣、鎂、銅、鋅與鉛含量則因濃縮效應而有上升的現象。蚓糞堆肥化處理者之養分含量顯著低於好氧堆肥化者,但因蚓糞堆肥的EC値及重金屬含量相對較低,故較不易造成不利作物生長的風險。試驗二以5公斤廢棄菇包作為基料,分別以豬糞 (VPM)、米糠 (VRM) 與西瓜皮 (VFM) 餵食蚯蚓並進行蚓糞堆肥化,並於第0、14、28、35、42與56天測定所有處理堆積物及蚓糞堆肥之成分特性。結果顯示,所有處理在蚓糞堆肥化過程中之有機質與有機碳含量均呈下降趨勢,而EC値、總氮、磷、鉀、鈣與重金屬含量均因食材特性及濃縮程度之不同而異,且養分含量之高低依序為VPM > VRM > VFM > BK。試驗三以1公斤廢棄菇包作為基料,分別以豬糞、米糠與西瓜皮餵食蚯蚓並進行蚓糞堆肥化,並於第0、21、42、56與77天中計數成蚓平均生質量、成蚓數、幼蚯蚓數與蚯蚓卵囊數以評估各處理對蚯蚓生殖生長的影響。結果顯示,所有處理之成蚓、幼蚯蚓、蚯蚓卵囊數量與成蚓平均生質量均以VRM處理者較高,VPM處理次之,再次為VFM處理,而以BK處理最差;因此以米糠餵食蚯蚓較豬糞或西瓜皮在增進蚯蚓生殖生長之效果較佳。雖然餵食米糠製成蚓糞堆肥之養分含量較餵食豬糞者低,但因其有較佳之蚯蚓生殖生長及較低之重金屬含量,因此三種食材在餵養蚯蚓及蚓糞堆肥製作的效果中,以米糠較佳。

Converting organic wastes into high quality composts by composting has resource recycling benefits, and vermicomposting and thernopholic aerobic composting are commonly used. However, previous studies usually compare two types of composting with different organic wastes. The purposes of this study are to (1) compare of compost and vermicompost with the same organic wastes after two weeks pre-composting, measuring the changes properties;(2) evaluate the growth and reproduction of earthworms and nutrient contents of vermicomposts are affected by three different organic wastes. Eisenia fetida is used to in the experiments. Three experiments was conducted in this study. Mushroom wastes mixed with pig manure (50 % : 50 %, w/w) and did two-week pre-composting , then conducted composting or vermicomposting to investigate the properties of mixed materials at the 0, 14th, and 69th days and the maturity of final products. Results showed that the organic matter and organic carbon contents decreased due to the decomposition by microorganisms and/or earthworms, while EC, total nitrogen, phosphorus, potassium, calcium, magnesium, copper, zinc and lead contents increased due to concentrated effects. Vermiconpost had lower nutrients than compost, however, it is less likely to cause the adversely risk on crop growth due to lower EC and heavy metal contents. The second experiment used 5 kg mushroom wastes as a base material, then pig manure (VPM), rice bran (VRM) and watermelon rind (VFM) were used to feed earthworms and the properties of materials were determined at the 0, 14th , 28th , 35th , 42th and 56th days during vermicomposting. Results showed that the contents of organic matter and organic carbon were decreased, while the effects of the changes of EC, total nitrogen, phosphorus, potassium, calcium, magnesium and heavy metal contents varied with different food characteristics and concentrated effects. The contents of nutrient were VPM > VRM > VFM > BK. The third experiment use 1 kg mushroom wastes as a base material then pig manure (VPM), rice bran (VRM) and watermelon rind (VFM) were used to feed earthworms, the number of adult earthworms, unclitellated earthworms, cocoons and the mean biomass of earthworm at the 0, 21th, 42th, 56th and 77th days during vermicomposting to compare the reproduction and growth of earthworm in each treatment. Results showed that VRM had highest number of adult earthworms, unclitellated earthworms, cocoons and mean biomass, followed by VPM, VFM and BK. It indicated rice bran was better in enhancing earthworms growth and reproduction than pig manure and watermelon rind. Although vermicompost had derived from lower nutrient contents, but had better earthworms growth and reproduction and lower heavy metal contents than that of pig manure, so rice bran is a better food source for earthworm growth and vermicompost production than other two organic wastes.

目錄
頁次
摘要…………………………………………………………………………………….I
目錄…………………………………………………………………………………….V
表次…………………………………………………………………………………....VII
圖次……………………………………...……………………………………………..IX

壹、 前言………………………………………………………………………….1
貳、 前人研究…………………………………………………………………….2
一、 廢棄物分類…………………………………………………………….2
二、 廢棄物之處理方式…………………………………………………….2
三、 廢棄物經蚓糞堆肥化作用之成分特性變化………………………….8
四、 有機廢棄物經蚓糞堆肥化作用之蚯蚓生殖生長影響……………….9
参、目的……………………………………………………………………………….10
肆、材料與方法……………………………………………………………………….11
試驗一、一般堆肥與蚓糞堆肥堆肥化過程中之養分含量變化……………….11
試驗二、不同食物餵食對蚓糞堆肥中之成分特性變化……………………….13
試驗三、不同食物餵食對蚯蚓生殖生長之影響…...…………………………..15
分析方法………………………………………………………………………….16
統計分析………………………………………………………………………….18
伍、結果與討論……………………………………………………………………….20
一、一般堆肥與蚓糞堆肥堆肥化過程中之養分含量變化…………………….20
(1) pH値變化…………………………………………………………………….20
(2) EC値變化……………………………………………………………….……21
(3) 有機質與有機碳含量變化…………………………………………….…….23
(4) 總氮含量變化…………………………………………………………….….25
(5) 磷含量變化…………………………………………...………………….…..25
(6) 鉀含量變化…………………………………………………………….……..26
(7) 鈣含量變化……………………………………………………………….…..26
(8) 鎂含量變化…………………………………………………………………...27
(9) 堆肥腐熟度……………………………………………………………….…..29
(10) 重金屬含量變化…………………………………………………….………31
二、不同食物餵食對蚓糞堆肥中之成分特性變化…………………………….36
(1) pH値變化…………………………………………………………………….36
(2) EC値變化………………………………………………………….…………37
(3) 有機質與有機碳含量變化……………………………………….………….37
(4) 總氮含量變化………………………………………………….…………….42
(5) 磷含量變化…………………………………………………………………..42
(6) 鉀含量變化…………………………………………………………………..45
(7) 鈣含量變化…………………………………………………………………..45
(8) 堆肥腐熟度……………………………………………………………….…..48
(9) 重金屬含量變化…………..………………………………………….………51
三、不同食物餵食對蚯蚓生殖生長之影響………………………...…………..54
(1) 蚯蚓卵囊數量變化…………………………………………………………..54
(2) 幼蚯蚓數量變化……………………………………………………………..55
(3) 成熟蚯蚓數量變化…………………………………………………………..56
(4) 成熟蚯蚓平均生質量變化…………………………………………………..56
陸、結論……………………………………………………………………………….60
柒、參考文獻………………………………………………………………………….61
捌、附件……………………………………………………………………………….72

表次
頁次
表一、基料及原料預堆14天之基本特性……………………………………………………………….19
表二、試驗二所使用原料之基本性質……………………………………………….19
表三、各處理在堆肥化過程中之pH值與EC值變化……………………………….22
表四、各處理在堆肥化過程中之有機質與有機碳含量變化………………………...24
表五、各處理在堆肥化過程中之總氮、磷、鉀、鈣與鎂含量變化…………………….28
表六、各處理在堆肥化過程中之碳氮比變化…….………………………………….30
表七、一般堆肥與蚓糞堆肥在試驗69天之種子發芽率與相對發芽率…………….30
表八、各處理在堆肥化過程中之鉛含量變化………………………………………...34
表九、餵食不同有機廢棄物之蚓糞堆肥種子發芽率與相對發芽率..……………….50
表十、餵食不同有機廢棄物經蚓糞堆肥化過程中蚯蚓卵囊數量變化………….….58
表十一、餵食不同有機廢棄物經蚓糞堆肥化過程中幼蚯蚓數量變化…………..….58
表十二、餵食不同有機廢棄物經蚓糞堆肥化過程中成熟蚯蚓數量變化……..…….59
表十三、餵食不同有機廢棄物經蚓糞堆肥化過程中成熟蚯蚓平均生質量變化…...59

附表一、各處理在堆肥化過程中之銅、鋅、鎳與鉻含量變化…….………………….72
附表二、餵食不同有機廢棄物之蚓糞堆肥pH值…………………………………….73
附表三、餵食不同有機廢棄物之蚓糞堆肥EC值…………………………………….73
附表四、餵食不同有機廢棄物之蚓糞堆肥有機質含量…….…………….………….74
附表五、餵食不同有機廢棄物之蚓糞堆肥有機碳含量……………………………...74
附表六、餵食不同有機廢棄物之蚓糞堆肥總氮含量..……………………………….75
附表七、餵食不同有機廢棄物之蚓糞堆肥磷含量….………….…………………….75
附表八、餵食不同有機廢棄物之蚓糞堆肥鉀含量…………….……….…...……….76
附表九、餵食不同有機廢棄物之蚓糞堆肥鈣含量………….………….…...……….76
附表十、餵食不同有機廢棄物之蚓糞堆肥鎂含量………….…………….…...….….77
附表十一、餵食不同有機廢棄物之蚓糞堆肥碳氮比…….…………………………..77
附表十二、餵食不同有機廢棄物之蚓糞堆銅含量……….….……………………….78
附表十三、餵食不同有機廢棄物之蚓糞堆鋅含量……….…………………………..78
附表十四、餵食不同有機廢棄物之蚓糞堆鎳含量…….….………………………….79
附表十五、餵食不同有機廢棄物之蚓糞堆鉻含量….…….………………………….79
附表十六、餵食不同有機廢棄物之蚓糞堆鎘含量………….………….…………….80
















圖次
頁次
圖一、各處理在堆肥化過程中之(a)銅與(b)鋅含量變化……………….…………….33
圖二、各處理在堆肥化過程中之(a) 鎳與(b) 鉻含量變化……………….………….35
圖三、餵食不同有機廢棄物之蚓糞堆肥pH值……………………………………….37
圖四、餵食不同有機廢棄物之蚓糞堆肥EC值……………………….…………..…..39
圖五、餵食不同有機廢棄物之蚓糞堆肥有機質含量……………………..……..…...40
圖六、餵食不同有機廢棄物之蚓糞堆肥有機碳含量……………………..………….41
圖七、餵食不同有機廢棄物之蚓糞堆肥總氮含量……………………..…………….43
圖八、餵食不同有機廢棄物之蚓糞堆肥磷含量……………………..……………….44
圖九、餵食不同有機廢棄物之蚓糞堆肥鉀含量……………..……………………….46
圖十、餵食不同有機廢棄物之蚓糞堆肥鈣含量………………..…………………….47
圖十一、餵食不同有機廢棄物之蚓糞堆肥碳氮比………………..………………….49
圖十二、餵食不同有機廢棄之蚓糞堆肥(a)銅、(b) 鋅、(c) 鎳、(d) 鉻與(e) 鎘含量……………………………………………………………………………………….52







行政院農業委員會。2013。事業廢棄物、一般廢棄物與有機廢棄物統計調查結果。
行政院農業委員會農糧署。2013。肥料種類品目及規格,http://gazette.nat.gov.tw/EG_FileManager/eguploadpub/eg019061/ch07/type1/gov62/num29/Eg.htm。中華民國102年4月20日修正。
林叡呈。2012。蚓糞堆肥與禽畜糞堆肥之單獨或混合施用對甘藍生育及土壤肥力之影響。國立中興大學土壤環境科學系碩士論文。
陳仁炫。2007。蚯蚓與土壤生產力之關係。豐年半月刊。第57卷第22期第45-48頁
梁容鐘。2005。以蚯蚓生殖及生長評估土壤重金屬汙染之可行性研究。國立中興大學土壤環境科學系碩士論文。
黃裕銘、吳正宗。1999。禽畜糞堆肥成分檢驗方法與實習操作。88年度全省禽畜糞堆肥場堆肥成分分析檢驗及處理技術手冊。中興大學土壤調查試驗中心。P. 5-15。
詹明泓。2014。不同預堆時間之豬糞與菇類養殖廢棄包的混合物對蚯蚓生長及蚓糞堆肥的影響。國立中興大學土壤環境科學系碩士論文。
楊敬輝、張松林。2011。蚓糞堆肥汙泥研究敘述。湖北農業科學。第50卷第9期第1729 – 1731頁。
蔡青芬。2011。評估不同組合有機廢棄物對蚯蚓生長及蚓糞堆肥特性的影響。國立中興大學土壤環境科學系碩士論文。
顏偉益。2010。評估有機廢棄物的特性對蚯蚓生長生殖及蚯蚓糞肥的影響。國立中興大學土壤環境科學系碩士論文。
簡宣裕。2001。堆肥品質判定。肥料要覽。增訂三版。中懷土壤肥料學會印行。第85-90頁。

Aalok, A., A.K. Tripathi, and P. Soni. 2008. Vermicomposting: A better option for
organic solid waste management. J. Hum. Ecol. 24:59-64.
Abu Bakar, A., N.Z. Mahmood, J.A.T. da Silva, N. Abdullah, and A.A. Jamaludin.
2011. Vermicomposting of sewage sludge by lumbricus rubellus using spent
mushroom compost as feed material: Effect on concentration of heavy metals.
Biotechnol. Bioproc. Eng. 16:1036-1043.
Aira, M., F. Monriy, and J. Dominguez. 2007. Earthworms strongly modify microbial
biomass and activity triggering enzymatic activities during vermicomposting
independently of the application rates of pig slurry. Sci. Total Environ.
385:252-261.
Arancon, N.Q., C.A. Edwards. and P. Bierman. 2008. Influence of vermicomposts,
produced by earthworms and microorganisms from cattle manure, food waste and
paper waste, on the germination, growth and flowering of petunias in the
greenhouse. Appl. Soil Ecol. 39:91-99.
Atiyeh, R.M., N.Q. Arancon, C.A. Edwards, and J.D. Metzger. 2000. Influence of
earthworm-processed pig manure on the growth and yield of greenhouse tomatoes.
Bioresour. Technol. 75:175-180.
Atiyeh, R.M., N.Q. Arancon, C.A. Edwards, and J.D. Metzger. 2002. The influence
of earthworm-processed pig manure on the growth and productivity of marigolds.
Bioresour. Technol. 81:103-108.
Azarmi, R., M.T. Giglou, and B. Hajieghrari. 2009. The effect of sheep-manure
vermicompost on quantitative and qualitative properties of cucumber (Cucumis
sativus L.) grown in the greenhouse. Afr. J. Biotechnol. 8:4953-
4957.


Bachman, G.R., and J.D. Metzger. 2007. Physical and chemical characteristics of a
commercial potting substrate amended with vermicompost produced from two different manure sources. Horttechnology. 17:336-340.
Bansal, S., K.K. Kapoor. 2000. Vermicomposting of crop residues and cattle dung
with Eisenia foetida. Bioresour. Technol. 73:95–98.
Baraken, F.N., S.H. Salem, A.M. Heggo, and M.A. Bin-Sinha. 1995. Activities of
rhizosphere microorganism as affected by application of organic amendments in a
calcareous loamy soil nitrogen transformation. Arid Soil Research and Rehabiliation. 9(4): 467-480.
Beffa, T., Blanc, and M. Aragno. 1996. Obligately and facultatively autotrophic,
sulfur and hydrogen oxidizing thermophilic bacteria isolated from hot compost.
Arch. Microbiol. 165:34-40.
Bohlen, P.J. 2002. Earthworms. Encyclopedia of Soil Science. 370-373.
Brady, N.C., and R.R. Weil. 2002. The Nature and Properties of soils, thirteenth ed.
Prentice Hall of India, New Delhi, 960.
Bremner, J.M. and C.S. Mulvaney. 1982. Nitrogen-total. P. 595-624. In A. L. Page et
al., (ed.) “Methods of Soils Analysis”. Part 2. 2nd ed. Agron. Mongr. 9. ASA and
SSSA., Medison, WI.
Butt, K.R. 1993. Utilisation of solid paer-mill sludge and spent brewery yeast as a
feed for soil-dwelling earthworms. Bioresour. Technol. 44:105-107.
Cambardella, C.A., T.L. Richard, and A.Russell. 2003. Compost mineralization in soil
as a function of composting process conditions. Euro. J. Soil Biol. 39:117-127.
Chanyasak, V., M. Hirai, and H. Kubota. 1982. Changes of chemical components and
nitrogen transformation in water extracts during composting of garbage. J. Ferment.
Technol. 60:439-446.

Cunha Queda, A.C., G. Vallini, M. Agnolucci, C.A. Coelho, L. Campos, and R.B. de
Sousa. 2002. Microbiological and chemical characterization of composts at
different levels of matury, with evaluation of phytotoxicity and enzymatic activities. p. 345-355. In H. Insam, N. Riddech, S. Krammer (ed.) Microbiology of Composting Springer Verlag, Heidelberg.
Dominguez, J., C.A. Edwards, and J. Ashby. 2000. The biology and population
dynamics of Eudrilus eugeniae(Kinberg) (Oilgochaeta) in cattle waste solid.
Pedobiologia. 45:341-353.
Edwards, C.A. 1988. Breakdown of animal, vegetable and industrial organic wastes
by earthworms. Waste Environ. Manage. 21-31.
Edwards, C.A. 1988. The use of earthworms in the breakdown and management of
organic wastes. Earthworm Ecol. 327-354.
Edwards,C.A., and N.Q. Arancon. 2004. The use of earthworms in the breakdown
of organic wastes to produce vermicomposts and animal feed protein. Earthworm
Ecology. P. 345-438.
Edwards, C.A., J. Dominguez, E.F. Neuhauser. 1998. Growth and reproduction of Parionyx excavates (Perr.)(Megascolecidae) as factors in organic waste management. Biol. Fertil. Soils. 27:155-161.
Elvira, C., M. Goicoechea, L. Sampedro, S. Mato, R. Nogales. 1996. Bioconversion of solid paper pulp mill sludge by earthworms. Biores. Technol. 57:173–177.
Fataei, E., and K. Hashemimajd. 2012. Assessment of chemical quality and manure
value of vermicompost prepared from mushroom wastes. Asian Journal of Chemistry. 24:1051-1054.
Fornes, F., D. Mendoza-Hernandez, R. Garcia-de-la-Fuente, M. Abad, and R.M. Belda. 2012. Composting and vermicomposting: A comparative study of organic matter evolution through straight and combined processes. Biores. Technol. 118:296-305.
Garg, V.K., P. Kaushik. 2005. Vermistabilization of textile mill sludge spiked with
poultry droppings by an epigeic earthworm Eisenia foetida. Biores. Tech. 96:1063–1071.
Garg, V.K., Y.K. Yadav, A. Sheoran, S. Chand, and P. Kaushik. 2006. Livestock excreta management through vermicomposting using an epigeic earthworm Eisenia fetida. Environmentalist. 26:269-276.
Gomez-Brandom, M., C. Lazcano, M. Lores, and J. Dominguez. 2011. Short-term stabilization of grape marc through earthworms. J. Haz. Mat. 187:291-295.
Goyal, S., S.K. Dhull, and K.K. Kapoor. 2005. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresour. Technol. 96:1584-1591.
Gupta, R., and V.K. Garg. 2008. Stabilization of primary sewage sludge during vermicomposting. J. Hazard. Mater. 153:1023–1030.
Gutierrez-Miceli, F.A., J. Santtiago-Borraz, J.A.M. Molina, C.C. Nafate, M. Abud-
Archila, M.A.O. Llaven, R. Rincon-Rosales, and L. Dendooven. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of
tomato (Lycopersicum esculentum). Bioresour. Technol. 98:2781-2786.
Gutierrez-Miceli, F.A., B. Moguel-Zamudio, M. Abud-Archila, V.F. Gutierrez-Oliva,
and L. Dendooven. 2008. Bioresour. Technol. 99:7020-7026.
Hait, S., and V. Tare. Tare. 2011. Vermistabilization of primary sewage sludge.
Bioresour. Technol. 102:2812-2820.
Hobsen, A.M., J. Frederickson, and N.B. Dise. 2005. CH4 and N2O from
mechanically turned windrow and vermicomposting systems following in – vessel
pre-treatment. Waste Manage. 345-352.


Hoitink, H.A.J., and M.J. Boehm. 1999. Biocontrol within the context of soil
microbial communities: a substrate-dependent phenomenon. Annual Reviews of
Phytopathology. 37:427-446.
Hutchison, M.L., L.D. Walters, S.M. Avery, F. Munro, and A. Moore. 2005.
Analysis of livestock production waste storage, and pathogen levels and
prevalences in farm manures. Appl. Environ. Microbiol. 71:1231-1236.
Jones, J.B., and J.B. Jones. Jr. 2001. Laborator Guide for Conducting Soil Tests and
Plant Analysis. CRC Press.
Kaur, A., J. Singh, A.P. Vig, S.S. Dhaliwal, and P.J. Rup. 2010. Cocomposting with
and without Eisenia fetida for conversion of toxic paper mill sludge to a soil
conditioner. Bioresour. Technol. 101:8192-8198.
Kaushik, P., and V.K. Garg. 2003. Vermicomposting of mixed solid textile mill sludge
and cow dung with the epigeic earthworm Eisenia fetida. Bioresour. Technol.
90:311-316.
Kethar, C.M. 1993. Use of biogas slurry in agriculture. Consortium on Rutal
Technology. P. 24-26.
Khwairakpam, M., and R. Bhargava. 2009. Vermitechnology for sewage sludge
recycling. J. Haz. Mat. 161:948-954.
Kula, H., and O. Larink. 1997. Development and standardization of test methods for
the reproduction of sublethal effects of chemicals on earthworms. Soil Biol.
Biochem. 29:635-639.
Lazcano, C., M. Gomes-Brandon, and J. Domingguez. 2008. Comparison of the
effectiveness of composting and vermicomposting for the biological stabilization of
cattle manure. Chemosphere. 72:1013-1019.


Maboeta, M.S., S.A. Reinecke, A.J. Reinecke. 2004. The relationship between
lysosomal biomarker and organismal response in an acute toxicity test with Eisenia
fetida (Oligochaeta) exposed to the fungicide copper oxychloride. Environ. Res.
96:95-101.
Mainoo, N.O.K., S. Barrington, J.K. Whalen, and L. Sampedro. 2009. Pilot-scale
vermicomposting of pineapple wastes with earthworms native to Accra, Ghana.
Bioresour. Technol. 100:5872-5875.
Manna, M.C., S.J ha, P.K. Ghosh, C.L. Acharya. 2003. Comparative efficacy of three
epigeic earthworms under different deciduous forest litters decomposition.
Bioresour. Technol. 88:197–206.
Miller, D.M., and W.P. Miller. 1999. Land application of wastes Handbook Soil Sci.
9-217.
Mitchell, A. 1997. Production of Eisenia fetida and vermicompost from feed-lot cattle
manure. Soil Biology and Biochemistry. 29:763-766.
Nair, J., V. Sekiozoic, and M. Anda. 2006. Effect of pre-composting on
vermicomposting of kitchen waste. Bioresour. Technol. 97:2091–2095.
Nair, J., and K. Okamitsu. 2010. Microbial inoculants for small scale composting of
putrescible kitchen wastes. Waste Manage. 30:977-982.
Negi, R., and S. Suthar. 2013. Vermistabilization of paper mill wastewater sludge
using Eisenia fetida. Bioresour. Technol. 128:193-198.
Nelson, D.W., and L.E. Sommers. 1982. Total carbon, organic carbon, and organic
matter. Meth. Soil Anal. 539-579.
Oliva Llaven, L., M.A. Jimenez, J.L.G. Coro, B.I.C. Rincon-Rosales, R. Molina,
J.M. Dendooven, and F.A. Gutierrez-Miceli. 2008. Journal of Plant Nutrition.
31:1585-1598.

Salazar, F.J., D. Chadwick, B.F. Pain, D. Hatch, and E. Owen. 2005. Nitrogen budgets for three cropping systems fertilized with cattle manure. Bioresour. Technol. 96:235-245.
Sangwan, P., C.P. Kaushik, and V.K. Garg. 2008. Feasibility of utilization of horse
dung spiked filter cake in vermicomposters using exotic earthworm Eisenia fetida.
Bioresour. Technol. 99:2442-2448.
Shahmansouri, M.R., H. Pourmoghadas, A.R. Parvaresh, and H. Alidadi. 2005. Heavy
metals bioaccumulation by Iranian and Australian earthworms (Eisenia fetida) in
the sewage sludge vermicompost. Iranian J. Env. Health Sci. Eng. 2:28-32.
Sharholy, M., K. Ahmad, G. Mahmood, and R.C. Trivedi. 2008. Municipal solid
waste management in Indian cities-A review. Waste Manage. 28:459-467.
Sinha, R.K., G. Bharambe, D. Ryan. 2008. Converting wasteland into wonderland by
earthworms-a low-cost nature’s technology for soil remediation : a case study of
vermiremediation of PAHs contaminated soil. Environmentalist. 28:466-475.
Spurgeon, D.J., and S.P. Hopkin. 1996. Effects of metal-contaminated soils on the
growth, sexual development, and early cocoon production of the earthworm Eisenia
fetida, with particular reference to zinc. Ecotoxicology and Environmental Safety.
35:86-95.
Suthar, S. 2006. Potential utilization of guargum industrial waste in vermicompost
production. Bioresour. Technol. 97:2474-2477.
Suthar, S., 2007a. Nutrient changes and biodynamics of epigeic earthworm Perionyx
excavatus (Perrier) during recycling of some agriculture wastes. Bioresour. Technol. 98:1608–1614.
Suthar, S. 2007b. Vermicomposting potential of Perionyx sansibaricus (Perrier) in
different waste materials. Bioresour. Technol. 97:2474–2477.

Suthar, S.,2008a. Bioconversion of post harvest crop residues and cattle shed manure
into value-added products using earthworms Eudrilus eugeniae Kinberg. Ecol.
Eng. 32:206–214.
Suthar, S. 2008b. Development of a novel epigeic-anecic based polyculture vermireactor for efficient treatment of municipal sewage water sludge. Int. J. Environ.Waste Manage. 2(1–2):84–101.
Suthar, S. 2008c. Metal remediation from partially composted distillery sludge using
composting earthworm Eisenia fetida. J. Environ. Monit. 10:1099–1106.
Suthar, S. 2009a. Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecological Engineering. 35:914-920.
Suthar, S. 2009b. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligochaeta). J. Hazard. Mater. 163:199–206.
Suthar, S. 2010. Recycling of agro-industrial sludge through vermitechnology. Ecol.
Eng. 36:1028-1036.
Suthar, S., and S. Singh. 2008a. Comparison of some novel polyculture and traditional
monoculture vermicomposting reactors to decompose organicwastes. Ecol. Eng.
33:210–219.
Suthar, S., and S. Singh. 2008b. Feasibility of vermicomposting in biostabilization sludge from a distillery industry. Sci. Tot. Environ. 393:237–243.
Suthar, S., and S. Singh. 2008c. Vermicomposting of domesticwaste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Technol. 5(1):99–106.
Suthar, S., K.M. Pravin, and S. Singh. 2012. Vermicomposting of milk processing
industry sludge spiked with plant wastes. Bioresour. Technol. 116:214-219.
Szegi, J. 1988. Cellulose decomposition and soil fertility. Chapt. VI. The activity of
cellulolytic microorganisms under different environmental conditions. 86-125.
Tejada, M., and Concepcion Benitez. 2011. Organic amendment based on
vermicompost and compost: differences on soil properties and maize yield. 2011.
Waste Management & Research. 29(11):1185-1196.
Tejada, M., J.L. Gonzalez. 2009. Application of two vermicomposts on a rice crop:
effects on soil biological properties and rice quality and yield. Agron. J. 101:336-
344.
Tejada, M., J.L. Gonzalez, M.T. Hernandez, and C. Garcia. 2008. Agricultural use of
leachates obtained from two different vermicomposting processes. Bioresour.
Technol. 99:6228-6232.
Tognetti, C., M.J. Mazzarino, and F. Laos. 2007. Cocomposting biosolids and
municipal organic waste: effects of process management on stabilization and
quality. Biology and Fertilizer of Soils. 43:387-397.
Tripathi, G., P. Bhardwaj. 2004. Decomposition of kitchen waste amended with cow
manure using epigeic species (Eisenia fetida) and an anecic species (Lampito
mauritii). Bioresour. Technol. 92:215–218.
Venkatesh, R.M., and T. Eevera. 2007. Mass reduction and recovery of nutrients
through vermicomposting of fly ash. Appl. Ecol.Environ. Res. 6(1):77-84.
Verma, R.K., R.S. Verma, L.U. Rahman, A. Yadav, D.D. Patra, and A. Kalar, 2014.
Utilization of distillation waste-based vermicompost and other organic and
inorganic fertilizers on improving production potential in geranium and soil health.
Communications in Soil Science and Plant Analysis. 45:141-152.



Wang, K., J. Zhang, Z. Zhu, H. Huang, T. Li, Z. He, X. Yang, and A. Alva. 2012.
Pig manure vermicompost (PMVC) can improve phytoremediation of Cd and PAHs
co-contaminated soil by Sedum alfredii. Journal of Soils and Sediments. 12:1089-
1099.
Xing, M., Y. Yang, Y. Wang, J. Li, and F. Yu. 2011. A comparative study of
synchronous treatment of sewage and sludge by two vermifiltrations using on
epigeic earthworm Eisenia fetida. J. Haz. Mat. 185:881-888.
Yadav, A., and V.K. Garg. 2009. Feasibility of nutrient recovery from industrial sludge
by vermicomposting technology. J. Hazard. Mater. 168:262-268.
Zhu, W., W. Yao, Z. Zhang, and Y. Wu. 2014. Heavy metal behavior and dissolved
organic matter (DOM) characterization of vermicomposted pig manure amended
with rice straw. Environmental Sciences and Pollution Research. 21:12684-12692.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳仁炫。2007。蚯蚓與土壤生產力之關係。豐年半月刊。第57卷第22期第45-48頁
2. 王文宇,企業併購法總評,月旦法學,第83期,2002年。
3. 王麗玉,公司經理人制度之研究,輔仁法學,第10期,1991年。
4. 汪信君,董事責任保險之抑制機能及公司治理之關係,月旦法學雜誌,第156期,2008年。
5. 林建良、李韋誠、黃郁嵐、劉怡婷、劉懿德,米老鼠的陰影─由迪士尼案看董事之注意義務,月旦民商法雜誌,第19期,2008年。
6. 邵慶平,商業判斷原則的角色與適用─聯電案的延伸思考,科技法學評論,第8卷第1期,2011年。
7. 姜世明,證明度之研究,政大法學評論,第98期,2007年。
8. 郭大維,從比較法之觀點探討我國現行公司董(監)事與重要職員責任保險制度,輔仁法學,第36期,2008年。
9. 郭大維,論公司經營者責任之救濟機制─以公司對經營者補償制度為中心,政大法學評論,第117期,2010年。
10. 陳啟垂、廖大穎,論我國法適用「商業判斷原則」與舉證責任之分配,興大法學,第9期,2011年。
11. 陳愛娥,關於碩士論文寫作的幾點建議,月旦法學教室,試刊號,2002年。
12. 曾宛如,董事忠實義務之內涵及適用疑義─評析新修正公司法第23條第1項,臺灣本土法學雜誌,第38期,2002年。
13. 曾宛如,證券交易法之現狀與未來─期許建構體例完善的證券法規,月旦法學雜誌,第217期,2013年。
14. 廖大穎,公司負責人之注意義務與商業判斷原則的適用─臺北地院93年度重訴字第144號民事判決,月旦裁判時報,創刊號,2010年。
15. 廖大穎,企業經營與董事責任之追究─檢討我國公司法上股東代表訴訟制度,經社法制論叢,第37期,2006年,頁103。