|
[1]M. Zeman, J. Breza, and D. Donoval, “New Trends in Thin-Film Silicon Solar Cell Technology,” in Proc. IEEE Adv. Semicond. Devices Microsystems, 2002, pp. 353-362. [2]A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Domine, “Towards Very Low-Cost Mass Production of Thin-Film Silicon Photovoltaic ( PV ) Solar Modules on Glass,” Thin Solid Film, vol. 502, no. 1-2, pp. 292-299, 2006. [3]M. Konagai, “National Program: Thin Film Solar Cells Program in Japan - Achievements and Challenges,” in Proc. IEEE 29th Photovoltaic Spec. Conf., 2002, pp. 38-43. [4]X. Zhang and X. Xiao, “Recent Progress of Cu ( InGa ) Se2 Solar Cells,” in Proc. IEEE Asia Commun. Photonics Conf. Exhib., 2010, pp. 1-10. [5]P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, “Review of Progress toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules,” IEEE J. Photovoltaics, vol. 3, no. 1, pp. 572-580, 2013. [6]Y. Uchida, T. Ichimura, M. Ueno, and H. Haruki, “Microcrystalline Si:H Film and Its Application to Solar Cell,” Jpn. J. Appl. Phys. Part 2 – Lett., vol. 21, no. 9, pp. 586-588, 1982. [7]M. Kolter, C. Beneking, D. Pavlov, T. Eickhoff, P. Hapke, S. Frohnhoff, H. Munder, and H. Wagner, “Highly Conductive Microcrystalline n-layers for Amorphous Silicon Stacked Solar Cells: Preparation, Properties and Device Application,” in Proc. IEEE 23th Photovoltaic Spec. Conf., 1993, pp. 1031-1036. [8]J. Carabe and J. J. Gandia, “Thin-Film-Silicon Solar Cells,” Opto-Electron. Rev., vol. 12, no. 1, pp. 1-6, 2004. [9]G. Munyeme, M. Zeman, R. E. I. Schropp, and W. F. Vander Weg, “Performance Analysis of a-Si:H p-i-n Solar Cells with and without a Buffer Layer at the p / i Interface,” Phys. Status Solidi C, vol. 86, no. 9, pp. 2298-2303, 2004. [10]G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, and H. Takakura, “Reporting Solar Cell Efficiencies in Solar Energy Materials and Solar Cells,” Sol. Energy Mater. Sol. Cells, vol. 92, no. 4, pp. 371-373, 2008. [11]J. Kim, A. I. Abou-Kandil, A. J. Hong, M. M. Saad, D. K. Sadana, and T. C. Chen, “Efficiency Enhancement of a-Si:H Single Junction Solar Cells by a-Ge:H Incorporation at the p+ a-SiC:H / Transparent Conducting Oxide Interface,” IEEE Appl. Phys. Lett., vol. 99, no. 6, pp. 062102-062102-3, 2011. [12]M. H. Cohen, H. Fritzsch, and S. Ovshinsk, “Simple Band Model for Amorphous Semiconducting Alloys,” Phys. Rev. Lett., vol. 22, No. 20, pp. 1065-1068, 1969. [13]M. Zeman, “Thin-Film Silicon PV Technology,” J. Electr. Eng. Educ., vol. 61, no. 5, pp. 271-276, 2010. [14]S. O. Kasap, Materials and Devices Website for Scientists and Engineers, Third Edition, McGraw-Hill, 1996. [15]J. A. Rodriquez, P. Otero, M. Vetter, J. Andreu, E. Comesana, and A. J. Garcia, “Simulation of the effect of p-layer properties on the electrical behavior of a-Si:H thin film solar cell,” in Proc. IEEE Span. Conf. Electron Devices, 2011, pp. 1-4. [16]C. M. Fortmann, T. Zhou, C. Malone, M. Gunes, and C. R. Wronski, “Deposition Conditions, Hydrogen Content, and the Staebler-Wronski Effect in Amorphous-Silicon,” in Proc. IEEE 21th Photovoltaic Spec. Conf. - 1990, 1990, pp. 1648-1652. [17]M. H. Du and S. B. Zhang, “Topological Defects and the Staebler-Wronski Effect in Hydrogenated Amorphous Silicon,” IEEE Appl. Phys. Lett., vol. 87, no. 19, pp. 191903-191903-3, 2005. [18]P. Stradins, “Staebler-Wronski Defects: Creation Efficiency, Stability, and Effect on a-Si:H Solar Cell Degradation,” in Proc. IEEE 35th Photovoltaic Spec. Conf., 2010, pp. 142-145. [19]A. Kolodziej, “Staebler-Wronski Effect in Amorphous Silicon and its Alloys,” Opto-electron. Rev., vol. 12, no. 1, pp. 21-32, 2004. [20]N. Senoussaoui, T. Repmann, T. Brammer, H. Stiebig, and H. Wagner, “Optical Properties of Microcrystalline Thin Film Solar Cells,” Rev. Energ. Ren., vol. 3, no. 1, pp. 49-56, 2000. [21]A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells,” Science, vol. 285, no. 5428, pp. 692-698, 1999. [22]F. Meillaud, E. Vallat-Sauvain, X. Niquille, M. Dubey, J. Bailat, A. Shah, and C. Ballif, “Light-Induced Degradation of Thin Film Amorphous and Microcrystalline Silicon Solar Cells,” in Proc. IEEE 31th Photovoltaic Spec. Conf., 2005, pp. 1412-1415. [23]J. Meier, Thin-Film Silicon Solar Cell Technology: Current and Near Future, Oerlikon Solar – Constantine, 2008. [24]T. Soderstrom, F. J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Flexible Micromorph Tandem a-Si / μc-Si Solar Cells,” IEEE J. Appl. Phys., vol. 107, no. 1, pp. 014507-014507-7, 2010. [25]H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah, “Microcrystalline Silicon and Micromorph Tandem Solar Cells,” Appl. Phys. A, vol. 69, no. 2, pp. 169-177, 1999. [26]M. Kambe, T. Matsui, H. Sai, N. Taneda, K. Masumo, A. Takahashi, T. Ikeda, T. Oyama, M. Kondo, and K. Sato, “Improved Light-Trapping Effect in a-Si:H / μc-Si:H Tandem Solar Cells by Using High Haze SnO2:F Thin Films,” in Proc. IEEE 34th Photovoltaic Spec. Conf., 2009, pp. 1891-1894. [27]Y. Aya, H. Katayama, M. Matsumoto, M. Hishida, W. Shinohara, I. Yoshida, A. Kitahara, H. Yoneda, A. Terakawa, and M. Iseki, “Progress in the Development of High-Conversion-Efficiency a-Si / μc-Si Tandem Solar Module Using μc-Si Thin Film with High Deposition Rate on Gen. 5.5 Large-Area Glass Substrate,” in Proc. IEEE 37th Photovoltaic Spec. Conf., 2011, pp. 003577-003582. [28]C. W. Chang, C. I. Wu, K. H. Chuang, C. H. Chang, K. C. Lin, and C. Y. Tsai, “Innovative Passivation for Reducing Degradation of a-Si / uc-Si Tandem Photovaltaic Module,” in Proc. IEEE 37th Photovoltaic Spec. Conf., 2011, pp. 002991-002994. [29]M. Matsumoto, Y. Aya, A. Kuroda, H. Katayama, T. Kunii, K. Murata, M. Hishida, W. Shinohara, I. Yoshida, A. Kitahara, H. Yoneda, A. Terakawa, M. Iseki, and M. Tanaka, “The Development of High-Rate Deposition Technology for Microcrystalline Silicon for High-Efficiency a-Si / μc-Si Tandem Solar Module,” IEEE J. Photovolt., vol. 3, no. 1, pp. 35-40, 2013. [30]M. Vukadinovic, F. Smole, M. Topic, R. E. I. Schropp, and F. A. Rubinelli, “Transport in Tunneling Recombination Junctions: A Combined Computer Simulation Study,” IEEE J. Appl. Phys., vol. 96, no. 12, pp. 7289-7299, 2004. [31]H. Kuraseko, T. Nakamura, S. Toda, H. Koaizawa, H. Jia, and M. Kondo, “Development of Flexible Fiber-Type Poly-Si Solar Cell,” in Proc. IEEE World Conf. Photovoltaic Energy Conversion, 2006, pp. 1380-1383. [32]W. J. Xu, S. Choi, and M. G. Allen, “Hairlike Carbon-Fiber-Based Solar Cell,” in Proc. IEEE Micro Electro Mech. Syst., 2010, pp. 1187-1190. [33]S. T. Chang, M. Tang, C. X. Huang, and C. W. Chang, “Tandem Thin Film Solar Cell with a Nanoplate Structure,” in Proc. IEEE Nanotechnology, 2010, pp. 316-319. [34]Atlas User''s Manual : Device Simulation Software, Silvaco International Inc., Santa Clara, CA, USA, 2010. [35]S. Hamma and P. I. Roca i Cabarrocas, “Determination of the Mobility Gap of Microcrystalline Silicon and of the Band Discontinuities at the Amorphous Microcrystalline Silicon Interface Using in Situ Kelvin Probe Technique,” IEEE Appl. Phys. Lett., vol. 74, no. 21, pp. 3218-3220, 1999. [36]Y. Poissant, P. Chatterjee, and P. R. I. Cabarrocas, “Analysis and Optimization of the Performance of Polymorphous Silicon Solar Cells: Experimental Characterization and Computer Modeling,” IEEE J. Appl. Phys., vol. 94, no. 11, pp. 7305-7316, 2003. [37]M. Nath, P. R. I. Cabarrocas, E. V. Johnson, A. Abramov, and P. Chatterjee, “The Open-Circuit Voltage in Microcrystalline Silicon Solar Cells of Different Degrees of Crystallinity,” Thin Solid Films, vol. 516, no. 20, pp. 6974-6978, 2008. [38]A. J. Letha and H. L. Hwang, “Two-Dimensional Modelling and Simulation of Hydrogenated Amorphous Silicon P(+)-N-N(+) Solar Cell,” J. Non-Cryst. Solids, vol. 355, no. 2, pp. 148-153, 2009.
|