跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張家瑋
研究生(外文):Chia-Wei Chang
論文名稱:摻雜鉺元素於Y2Ti2O7之下與上轉換螢光特性研究
論文名稱(外文):Down- and Up-converted Visible Luminescence Properties of Er3+-doped Y2Ti2O7 Nanocrystals
指導教授:丁初稷
指導教授(外文):Chu-Chi Ting
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:107
中文關鍵詞:燒綠石下轉換上轉換
外文關鍵詞:pyrochloredown-conversionup-conversionerbium
相關次數:
  • 被引用被引用:1
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究改變不同的摻雜濃度與製程溫度來合成Er3+-doped
Y2Ti2O7 薄膜與粉末,並探討其螢光特性。
我們使用溶膠凝膠法製備Er3+ (0, 5, 10%)-doped Y2Ti2O7、Er2Ti2O7薄膜,在980 nm 紅外線雷射激發下,研究其薄膜型態與上轉換發光特性,由實驗結果可得到ErxY2-xTi2O7 薄膜擁有高的平均穿透率(~77%)、高折射率(>1.93 at λ=550nm) 和高能階(>4.06 eV) 等特性,由於晶格的對稱性、[OH-]與濃度粹滅效應互相競爭之原因,Er3+ (5%)–doped Y2Ti2O7薄膜經700℃退火後,在1540nm (4I13/2→4I15/2) 有最強的躍遷。另外,我們也製作晶粒大小約為36~46nm 的Er3+ (3, 5, 7, 10%)–doped Y2Ti2O7 粉末,經380、980nm 雷射激發,具有下與上轉換發光特性,其發光峰值為526nm (2H11/2→4I15/2 )、547 nm(4S3/2→4I15/2)、660 nm(4F9/2→4I15/2)。Er3+(5%)-doped Y2Ti2O7 所得之綠光,其上轉換機制為雙光子吸收,Er3+(10%)-doped Y2Ti2O7 則因為短的鉺離子間距,進而增強了energy-transfer up-conversion 及energy-transfer cross- relaxation 機制,所以得到較強的紅光。
Er3+-doped Y2Ti2O7 thin films with the thickness of ~375 nm thin films were fabricated by the sol-gel spin-coating method. A pyrochlore phase ErxY2-xTi2O7 was observed with a strong (222) preferred orientation while the annealing temperature exceeded 800 °C. Below 800 °C annealing, thin films exhibited amorphous structure. The average visible transmittance calculated in the wavelength range 200–1100 nm of the Er3+-doped Y2Ti2O7 thin films annealed at 400 to 900 °C reduced from ~87 to ~77% because of the increase of grain size and surface roughness. The variation of refractive indexes and optical band gaps of Er3+-doped Y2Ti2O7 thin films strongly depend on the Er3+ concentrations and annealing temperatures. Higher annealing temperatures result in the increase of refractive indexes but the decease of optical band gaps. In addition, higher Er3+ concentrations lead to a decrease in both refractive indexes and optical band gaps. The variation of these basic optical properties can be attributed to the evolution of grain size, crystallinity, lattice constant, and composition of Er3+-doped Y2Ti2O7 thin films. Because the competition between the [OH-], concentration quenching effect, as well as the diversity and symmetry of Er3+ lattice sites, the Er3+ (5%)-doped Y2Ti2O7 thin films annealed at 700 °C for 1 h possessed the largest intensity of ~1.5μm PL and FWHM ~ 60 nm.
Er3+-doped Y2Ti2O7 nanocrystals with pyrochlore phase were fabricated by the Pechini sol-gel method and the average crystal size increased from ~34 to ~46 nm under 800 to 1000 °C/1 h annealing. The amorphous Er3+-doped Y2Ti2O7 nanocrystals was obtained at ≦700°C annealing temperature. The Er3+-doped Y2Ti2O7 nanocrystals possess the dual down- and up-converted luminescent properties, which convert the 380 and 980 nm photons to the visible green light (~526, and ~547 nm; 2H11/2→4I15/2 and 4S3/2→4I15/2) and red light (~660 nm; 4F9/2→4I15/2). For both high (10 mol%) and low (5 mol%) Er3+ doped concentration, the mechanism of up-converted green light is two-photon excited-state absorption; however, much stronger intensity of red light relative to green light is observed for sample with high Er3+ doped concentration (10 mol%), attributed to the reduced distance between Er3+-Er3+ ions resulting in the enhancement of the energy-transfer up-conversion and energy-transfer cross-relaxation mechanisms.
摘要 II
英文摘要 III
致謝 Ⅴ
目次 Ⅵ
表目錄 Ⅸ
圖目錄 Ⅹ
第一章 緒論 1
1-1 研究動機 1
1-2 前言 2
第二章 文獻回顧與理論基礎 5
2-1 螢光材料簡介 5
2-2 螢光材料的分類 5
2-2-1 以螢光材料組成分類 5
2-2-2 以螢光材料發光物性分類 6
2-2-3 以螢光材料特性分類 8
2-2-4 以激發源種類及其應用特性分類 9
2-3 發光機制簡介 10
2-3-1 發光原理 10
2-3-2 螢光與磷光 11
2-3-3 史托克位移 12
2-3-4 固態材料中的發光 14
2-3-4-1 本質發光 14
2-3-4-2 異質發光 15
2-4 影響發光行為與效率主要的因素 18
2-4-1 主體晶格效應 18
2-4-2 濃度淬滅效應 19
2-4-3 熱淬滅 20
2-4-4 毒化 20
2-5 螢光材料之組成與設計 21
2-6 螢光材料製程 23
2-6-1 固相反應法 23
2-6-2 溶膠凝膠法 24
2-6-3 水熱法 25
2-6-4 共沉澱法 25
2-6-5 其他製程 25
2-7 稀土元素的發光特性 26
2-7-1 鑭系元素之性質 26
2-7-2 稀土離子的電子躍遷 27
2-8 Pyrochlore主體結構 29
第三章 實驗方法 47
3-1 實驗藥品 47
3-2 儀器設備 47
3-2-1 掃描式電子顯微鏡 48
3-2-2 X光單晶繞射儀 48
3-2-3 UV-VIS光譜 49
3-2-4光致發光光譜儀 50
3-2-5 高溫爐 50
3-3 實驗步驟 51
3-3-1 以溶膠凝膠法製備Er3+- doped Y2Ti2O7薄膜 51
3-3-2 以溶膠凝膠法合成Er3+- doped Y2Ti2O7粉末 52
第四章 結果與討論 58
4-1 薄膜分析 58
4-1-1 SEM分析 58
4-1-2 XRD分析 58
4-1-3 穿透光譜分析 59
4-1-4 光譜分析 64
4-2 粉末分析 66
4-2-1 XRD分析 66
4-1-2 光譜分析 67
第五章 結論 87
參考文獻 89
[1] R.C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, The Netherlands, 1991, p. 20.
[2] J. E. Yang, “The Application and Investigation of Luminescence Materials in Electronic Industry”, Technical Report of ITRI, Hsinchu, Taiwan, 1992, p. 50.
[3] S. C. Tu, “The Structure and Property of Crystal”, Bouhaitang Co. Taiwan, 1987, p. 326.
[4] S. Cotton, “Lanthanides and Actinides”, Macmillan, London, 1990, p. 191
[5] C. Feldmann, T. Jüstel, C. R. Ronda and P. J. Schmidt, Adv. Funct. Mater. 13 (2003) 511.
[6] J. A. DeLuca, J. Chem. Edu. 57 (1980) 541.
[7] A. H. Kitai, “Solid state luminescence”, Chapman & Hall, Inc., UK, 1993, p. 30.
[8] G. Blasse, and B. C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, 1994, p. 13.
[9] Jablonskidiagram,
http://www.shsu.edu/~chemistry/chemiluminescence/JABLONSKI.htm
[10] G. Blasse and B.C Grabmaier, “Luminescence Materials”, Springer Verlag:New York, 1994, p. 50.
[11] P. W. Atkins and L. Jones, “Chemistry: molecules, matter and change” WH Freeman and Company, 1997, p. 105.
[12] 劉如熹、王健源著,”白光發光二極體製作技術”,台北市,民國90年。
[13] P. Guo, F. Zhao, G. Li, F. Liao, S. Tian and X. Jing, J. Lumin. 105 (2003) 61.
[14] M. Tabei and S. Shionoya, Jpn. J. Appl. Phys. 14 (1975) 240.
[15] S. Kuboniwa, H. Kawai and T. Hoshina, Jpn. J. Appl. Phys. 19 (1980) 1647.
[16] A. H. Kitai, “Solid state luminescence”, Chapman & Hall, Inc., UK, 1993, p. 38.
[17] E. N. Harvey, “A history of luminescence”, American philosophical society, Philadelphia, 1957, p. 18.
[18] W. R. Blumenthal and D. S. Philips, J. Am. Ceram. Soc. 79 (1996) 1047.
[19] A. Ikesue and I. Furusato, J. Am. Ceram. Soc. 78 (1995) 225.
[20] R. P. Rao, J. Electrochem. Soc. 143 (1996) 189.
[21] L. Xie and A. Ncormack, J. Solid State Chem. 83 (1989) 282.
[22] C. Yoon and S. Kang, J. Mater. Res. 16(4) (2001) 1210.
[23] M. Gomi, Jpn. J. Appl. Phys. 35 (1996) 1798.
[24] W. Jia, H. Yuan, L. Lu, H. Liu and W. M. Yen, J. Lumin. 76-77 (1998) 424.
[25] W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, J. Lumin. 83-84 (1999) 465.
[26] X. Ouyang, A. H. Kitai and Xiao, J. Appl. Phys. 79 (1996) 3229.
[27] V. Bondar, Mater. Sci. Engin. B69-70 (2000) 505.
[28] 張有義、郭蘭生編著,“膠體與界面化學入門”,高立圖書公司,台北市,民國86年。
[29] D. Myers, “Surfactant Science and Tecnology”, VCH, New York, 2000, p. 84.
[30] B. E. Douglas, D. H. McDaniel, and J. J. Alexander, “Concepts and Models of Inorganic Chemistry-3rd ”, John Wiley and Sons, Inc., New York (1994)
[31] S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press, Boca Raton, 1999, p. 3.
[32] P. Atkins and D. de Paula, “Physical Chemistry”, Oxford university press, 1997, p. 207.
[33] 工研院,”材料產業暨稀土材料發展研討會論文集”,工研院編印,台灣,民國93年。
[34] C. S. Shi and Q. Su, “The chemistry and physics of abnormal valence rare elements”, Science Press, Beijing, 1994.
[35] P. Dorenbos, J. Phys.: Condens. Matter. 15 (2003) 8417.
[36] P. Dorenbos, J. Lumin 111 (2005) 89.
[37] G. Blasse, ’’Handbook on the Physics and Chemistry of Rare Earths’’, North Holland, 1979, p. 237.
[38] G.Huber, K. Syassen, and W. B. Holzapfel, Phy. Rev. B 15 (1977) 5123.
[39] X. L. Wang, H. Wang and X. Yao, J. Am. Ceram. Soc. 80 (1997) 2745.
[40] C. L. Huang and Y. C. Chen, J. Eur. Ceram. Soc. 23 (2003) 167.
[41] D. Jiles, “Introduction to the Electronic Properties of Materials”, CRC Press, 2001, p. 121.
[42] R. Swanepoel, J. Phy. E. Sci. Ins. 16 (1983) 1214.
[43] B.D. Cullity and S.R. Stock, “Elements of X-Ray Diffraction” Hardcover, 2001, p. 170.
[44] L. M. Ershova, B.V. Ignat`ev, L. P. Kusalova, E. E. Lomonova, V. I. Myzina, V. M. Tatarintsev and L. G. Shcherbakova, Inorg. Mater. 13 (1977) 1634.
[45] M. Langlet, C. Coutier, J. Fick, M. Audier, W. Meffre, B. Jacquier and R. Rimet, Opt. Mat. 16 (2001) 463.
[46] Bass J., “Handbook of Optics Vol.2”, McGraw-Hill, 1994, p. 84.
[47] R. Thielsch, K. Kaemmer, B. Holzapfel and L. Schultz, Thin Solid Films 301 (1997) 203.
[48] D. E. Aspnes, Am. J. Phys. 50 (1982) 704.
[49] D. E. Aspnes, Thin Solid Films 89 (1982) 249.
[50] M. Cevro, Thin Solid Films 258 (1995) 91.
[51] A. Feldman, E.N. Farabaugh, W.K. Haller, D.M. Sanders and R.A. Stempniak, J. Vac. Sci. Technol. A 4 (1986) 2969.
[52] E. Anastassakis, A. Pinczuk, E. Burstein, F.H. Pollak and M. Cardona, Solid State Commun. 8 (1970) 133.
[53] S. Cho, J. Ma, Y. Kim, G. K. L. Wong and J. B. Ketterson, Appl. Phys. Lett. 75 (1999) 2761.
[54] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang
and H. Hug, J. Appl. Phys. 94 (2003) 354.
[55] B. G. Yacobi, “Semiconductor Materials”, McGraw-Hill, 2003, p. 45.
[56] A. Meftah, H. Ajlani, S. Aloulou, M. Oueslati, D. Scalbert, J. Allegre and H. Maaref, J. Lumines. 128 (2008) 1317.
[57] H. J. Lee, L. Y. Juravel and J. C. Woolley, Phys. Rev. B 21 (1980) 659.
[58] C. Bosio, J. L. Staehli, M. Guzzi, G. Burri and R. A. Logan, Phys. Rev. B 38 (1988) 3263.
[59] B. R. Judd, Phys. Rev. 127 (1962) 750.
[60] R. M. Moon, W. C. Koehler, H. R. Child and L. J. Raubenheimer, Phys. Rev. 176 (1968) 722.
[61] M. Langlet, P. Jenouvrier, R. Rimet and J. Fick, Opt. Mater. 25 (2004) 141.
[62] P. Jenouvrier, J. Fick, M. Audier and M. Langlet, Opt. Mater. 27 (2004) 131.
[63] ASTM JCPDS File No. 42-0413 (Y2Ti2O7) (1997).
[64] H.C. Gupta and S. Brown, J. Phys. Chem. Solids 64 (2003) 2205.
[65] M. Hamoumi, M. Wiegel and G. Blasse, J. Solid State Chem. 108 (1994) 410.
[66] J. Zhang, X. Wang, W.T. Zheng, X.G. Kong, Y.J. Sun and X. Wang, Mater. Lett 61 (2007) 1658.
[67] J. A. Capobianco, F. Vetrone, J. C. Boyer, A. Speghini and M. Bettinelli, Opt. Mater. 19 (2002) 259.
[68] A.F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza and U. Amador, Solid State Sci. 7 (2005) 343.
[69] E. Maurice, G´erard Monnom, B. Dussardier and D.B. Ostrowsky, J. Opt. Soc. Am. B 13 (1996) 693.
[70] J.L. Jackel, A.Y. Yan, E.M. Vogel, A.V. Lehmen, J.J. Johnson and E. Snitzer, Appl. Optics 31 (1992) 3390.
[71] N. Jaba, A. Kanoun, H. Mejri, A Selmi, S. Alaya and H. Maaref, J. Phys. Condes. Mat. 12 (2000) 4523.
[72] P. Blixt, J. Nilsson, T. Carlnas and B. Jaskorzynska, IEEE Photon. Technol. Lett 3 (1991) 996.
[73] N. Floquet, O. Bertrand and J.J. Heizmann, Oxid. Met. 37 (1992) 253.
[74] M.P. Hehlen, G. Frei and H.U. Güdel, Phys. Rev. B 50 (1994) 16264.
[75] A. Walasek, E. Zych, J. Zhang and S. Wang, J. Lumines. 127 (2007) 523.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊