|
[1] R. Badora, On approximate ring homomorphism, J. Math. Anal. Appl., 276 (2002),589-597.
[2] Z. Gajda, On stability of additive mappings, Internat. J. Math. & Math. Sci., 14(1991), 431-434.
[3] G. H. Hardy , J. E. Littlewood and G. Polya, Inequalities, Cambridge UniversityPress , Cambridge, 1952.
[4] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
[5] Y. Li, Z. Wang, and B. He, Hilbert’s type linear operator and some extensions of Hilbert’s inequality, J. Inequal. Appl. Vol. 2007 (2007), Article ID 82138, 10 pages.
[6] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-Von Neumann type additive functional equations, J. Inequal. Appl. (2007), to appear.
[7] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[8] T. M. Rassias, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114 (1992), 989-993.
[9] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.
[10] Z. Wang, D. Gua., An introduction to special functions, Science Press, Bejing, 1979.
[11] B. Yang, On the norm of a self-adjoint operator and applications to the Hilbert’s type inequalities, Bulletin of the Belgian Mathematical Society, 13 (2006), 577-584.
[12] B. Yang, On the norm of a certain self-adjoint integral operator and applications to bilinear integral inequalities, Taiwanese J. Math., to apprar.
[13] D. H. Zhang and H. X. Cao, Stability of functional equations in several variables, Acta Math. Sinica. (Engl. Ser.) 23 (2007), 321-326. 42
|