|
[1] L. Belloni, J. Chem. Phys. 85, 519 (1986). [2] S. Khan, T.L. Morton, D. Ronis, Phys. Rev. A 35, 4295 (1987). [3] S.A. Adelman, J. Chem. Phys. 64, 724 (1976). [4] S.A. Adelman, Chem. Phys. Lett. 38, 567 (1976). [5] K. Hiroike, J. Phys. Soc. Japan 27, 1415 (1969). [6] K. Hiroike, Mol. Phys. 33, 1195 (1977). [7] J.B. Hayter and J. Penfold, Mol. Phys. 42, 109 (1981). [8] E.J. Verwey and J.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948). [9] P. Baur, G. Nägele and R. Klein, Phys. Rev. E 53, 6224 (1996); Physica A 245, 297 (1997). [10] G. Szamel and H. Löwen, Phys. Rev. A 44, 8215 (1991). [11] B. Cichocki and W. Hess, Physica A 141, 475 (1987). [12] E.B. Sirota, H.D. Ou-Yang, S.K. Sinha and P.M. Chaikin, Phys. Rev. Lett. 62, 1524 (1989). [13] S.K. Lai, J.L. Wang, and G.F. Wang, J. Chem. Phys. 110, 7433 (1999). [14] W. Härtl, H. Versmold and X. Zhang-Heider, J. Chem. Phys. 102, 6613 (1995). [15] G.F. Wang, and S.K. Lai, Phys. Rev. Lett. 82, 3645 (1999). [16] W. Götze, in: J.P. Hansen, D. Levesque, J. Zinn-Justin (Eds.), Liquids, Freezing and the Glass Transition, Elsevier, Amsterdam, 1991, p. 287. [17] S.K. Lai and H.C. Chen, J. Phys.: Condens. Matter 5, 4325 (1993); 7, 1499 (1995); Phys. Rev. B 51, R12869 (1995); Phys. Rev. E 55, 2026 (1997). [18] J.P. Hansen and J.B. Hayter, Mol. Phys. 46, 651 (1982). [19] G. Nägele, R. Klein, M. Medina-Noyola, J. Chem. Phys. 83, 2560 (1980) [20] G. Senatore, L. Blum, J. Phys. Chem. 89, 2676 (1985). [21] M.J. Gillan, J. Phys. C 7, (1974) L1. [22] E.Y. Sheu, C.F. Wu, S.H. Chen, Phys. Rev. A 32, 3807 (1985). [23] D. Bratco, E.Y. Sheu, S.H. Chen, Phys. Rev. A 35, 4359 (1987). [24] S.K. Lai and G.F. Wang, Phys. Rev. E 58, 3072 (1998) [25] W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992). [26] Y. Monovoukas, and A.P. Gast, J. Colloid Interface Sci. 128, 533 (1989). [27] W. Götze, in: J.P. Hansen, D. Levesque, and J. Zinn-Justin, (Eds.), Liquids, Freezing and the Glass Transition, North-Holland, Amsterdam, 1991, p. 287. [28] S.D. Wilke and J. Bosse, Phys. Rev. E 59, 1968 (1999). [29] S.K. Lai, and G.F. Wang, Phys. Rev. E 58, 3072 (1998). [30] S.K. Lai, G.F. Wang and W.P. Peng, in: F. Tokuyama and H.E. Stanley (Eds.), The 3rd Tohwa University International Conference on Statistical Physics, AIP, vol. CP519, 99 (2000). [31] S.K. Lai, and H.C. Chen, J. Phys.: Condens. Matter 5, 4325 (1993); S.K. Lai, and H.C. Chen, J. Phys.: Condens. Matter 7, 1499 (1995); S.K. Lai, and S.Y. Chang, Phys. Rev. B 51, R12869 (1995). [32] We are currently looking into the possibility of understanding it analytically following along the line of Ref. [28] in the lowest region. [33] W. Götze in Liquids, Freezing and the Glass Transition, edited by J.P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991). [34] W. Hess and R. Klein, Adv. Phys. 32, 173 (1983). [35] P.N. Pusey and W. van Megen, Phys. Rev. Lett. 59, 2083 (1987); W. van Megen and P.N. Pusey, Phys. Rev. A 43, 5429 (1991). [36] A. Meller and J. Stavans, Phys. Rev. Lett. 68, 3646 (1992). [37] H. Matsuoka, T. Harada and H. Yamaoka, Langmuir 10, 4423 (1994); 12, 5588 (1996). [38] Y. Monovoukas and A.P. Gast, J. Colloid Interface Sci. 128, 533 (1989). [39] R. Kesavamoorthy, A.K. Sood, B.V.R. Tata and Akhilesh K. Arora, J. Phys. C 21, 4737 (1988). [40] S. Sengupta and A.K. Sood, Phys. Rev. A 44, 1233 (1991). [41] P. Salgi and R. Rajagopalan, Langmuir 7, 1383 (1991). [42] N. Choudhury and S. K. Ghosh, Phys. Rev. E 51, 4503 (1995). [43] D.A. McQuarrie, Statistical Mechanics ( Harper and Row, New York, 1976), pp. 266. [44] S.K. Lai, W.J. Ma, W. van Megen and I.K. Snook, Phys. Rev. E 56, 766 (1997). [45] We have not considered the indirect hydrodynamic interaction since an accurate ac- count of its in‡uence on the dynamic properties will require knowledge of irreducible many-body contributions to the di¤usion tensor whose exact expression is, a priori, not known. Within the MCT, Nägele and Baur [9] have derived an approximate formula for . 0:08 which falls o¤ the mark of the present work. [46] Here we follow the work of Baur et al. [9] in our de…nition of the bM(q; z). The di¤erence between the latter and the one used by others [10, 11] is a factor q2D0 which can easily be identi…ed. [47] K. Kawasaki, Physica A 208, 35 (1994). [48] U. Bengtzelius, W. Götze and A. Sjölander, J. Phys. C 17, 5915 (1984). [49] L. Sjögren, Phys. Rev. A 22, 2883 (1980). [50] We should point out that the e¤ective one component model of Belloni [1] is “con- tracted”from the multicomponent Ornstein-Zernike equations [S.A. Adelman, J. Chem. Phys. 64, 724 (1976)]. Within the theoretical framework of Belloni, it was shown there that this one component model S(q) and that S00(q) in the primitive model (which places equal footing on a collection of charged hard spheres with di¤erent species i and j interacting via pure Coulomb forces ZiZj= jare exactly equal if the Z0 in both models is taken to be the same nominal macroion charge. Accordingly, this Z0 should not be treated as an e¤ective or renormalized macroion charge [51]. Note further that this Z0 is determined self-consistently with the screening constant 2=4 LB( 0Z0Z1 +Pi=2 iZ2 i ) by the charge neutrality [24]. [51] K.S. Schmitz, Macroions in Solution and Colloidal Suspension (VCH, New York, 1993).
|