|
ch1 [1]H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing Glass and Plastic Refractive Microlenses Fabricated with Different Technologies,” J. Opt. A: Pure Appl. Opt., vol. 8, pp. 407-429. (2006) [2]Z. D. Popovic, R. A. Sprague, and G. A. Neville Connell, “Technique for Monolithic Fabrication of Microlens Arrays,” Applied Optics, vol. 27, no. 7, pp. 1281-1284. (1988) [3]D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The Manufacture of Microlenses by Melting Photoresist,” Meas. Sci. Technol, vol. 1, pp. 759-766. (1990) [4]T. R. Jay et al, “Preshaping Photoresist for Refractive Microlens Fabrication,” Opt. Eng., vol. 33, pp. 3552-3555. (1994) [5]H. Ottevaere, B. Volckaerts, J. Lamprecht, A. Hermanne, I. Veretennicoff, and H. Thienpont, “2D Plastic Microlens Arrays by Deep Lithography with Protons: Fabrication and Characterization,” J. Opt. A: Pure Appl. Opt., vol. 4, pp. 22-28. (2002) [6]K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct Writing of Microlenses in Polycarbonate with Excimer Laser Ablation,” Appl. Opt., vol. 42, pp. 6349-6359. (2003) [7]D. L. MacFarlane, V. Narayan, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet Fabrication of Microlens Arrays,” IEEE PTL, vol. 6, pp. 1112-4. (1994) [8]L. N. Thibos, “Principles of Hartmann-Shack Aberrometry,” Journal of Refractive Surgery, vol. 16, pp. 563-565. (2000) [9]B. Platt, R. Shack, “History and Principles of Shack-Hartmann Wavefront Sensing,” Journal of Refractive Surgery, vol. 17, pp. 573-577. (2001) [10]J. E. Greivenkamp, D. G. Smith, “Graphical Approach to Shack-Hartmann Lenslet Array Design,” Proceedings of SPIE, vol. 47(6), pp. 063601-1 – 063601-4. (2008) [11]World Forum for Harmonization of Vehicle Regulations (WP.29) [cited; Available from : http://www.unece.org/trans/main/wp29/wp29regs.html [12]Kelley, Charles R., Ketchel, James M. and Strudwick, Peter H., “Experimental Evaluation of Head-Up Display High Brightness Requirements”, Nov. 1965. [13]Robert D. Brown, David H. Modro, Michael R. Greer, “High resolution LCD projection based color head-up display”, Cockpit Displays VIII: Displays for Defense Applications, Proceedings of SPIE Vol. 4362, 2001 [14]Privacy glass. [ cited; Availabel from: http://www.polytronix.com/privacyglass_specs.htm [15]Smart film. [ cited; Available from: http://www.polytron.com.tw/ [16]Freeman; Glenn E., PPG Industries Ohio, Inc., “Windshield for head-up display system” United States Patent No. US 6636370 B2, Field: August 21, 1998, Date of patent: October 21, 2003. [17]Weber; Michael F., Ouderkirk; Andrew J., Wheatley; John A., Brodd; Jonathan, 3M Innovative Properties Company, “Head-up display with narrow band reflective polarizer”, United States Patent No. US 7123418 B2
ch2
[1]H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, "Coupling efficiency enhancement in organic light-emitting devices using microlens array - Theory and experiment," IEEE/OSA Journal of Display Technology, vol. 1, pp. 278-282, 2005. [2]J.-W. Pan, C.-M. Wang, H.-C. Lan, W.-S. Sun, and J.-Y. Chang, "Homogenized LED-illumination using microlens arrays for a pocket-sized projector," Optics Express, vol. 15, pp. 10483-10491, 2007. [3]G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, "Shack Hartmann wave-front measurement with a large F-number plastic microlens array," Applied Optics, vol. 35, pp. 188-188, 1996. [4]N. A. Davies, M. McCormick, and M. Brewin, "Design and analysis of an image transfer system using microlens arrays," Optical Engineering, vol. 33, pp. 3624-3633, 1994. [5]S. Sinzinger and J. Jahns, Microoptics: Wiley-VCH, 1999. [6]H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," Journal of Optics A: Pure and Applied Optics, vol. 8, p. S407, 2006. [7]H. A. Biebuyck and G. M. Whitesides, "Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold," Langmuir, vol. 10, pp. 2790-2793, 1994. [8]D. M. Hartmann, O. Kibar, and S. G. Esener, "Characterization of a polymer microlens fabricated by use of the hydrophobic effect," Optics Letters, vol. 25, pp. 975-977, 2000. [9]O. P. Parida and N. Bhat, "Characterization of optical properties of SU-8 and fabrication of optical components," in Int. Conf. on Optics and Photonics, CSIO, Chandigarh, India, 2009. [10]S.-M. Kuo and C.-H. Lin, "Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method," Opt. Express, vol. 18, pp. 19114-19119, 2010. [11]C.-J. Chang, C.-S. Yang, L.-H. Lan, P.-C. Wang, and F.-G. Tseng, "Fabrication of a SU-8-based polymer-enclosed channel with a penetrating UV/ozone-modified interior surface for electrokinetic separation of proteins," Journal of Micromechanics and Microengineering, vol. 20, 2010. [12]K. Oura, Surface science: an introduction: Springer, 2003.
ch3
[1]Peng H, Ho YL, Yu X-J, Wong M and Kwok H-S. Coupling efficiency enhancement in organic light-emitting devices using microlens array - Theory and experiment. IEEE/OSA Journal of Display Technology. 2005; 1: 278-82. [2]Yoon GY, Jitsuno T, Nakatsuka M and Nakai S. Shack Hartmann wave-front measurement with a large F-number plastic microlens array. Applied Optics. 1996; 35: 188-. [3]Pan J-W, Wang C-M, Lan H-C, Sun W-S and Chang J-Y. Homogenized LED-illumination using microlens arrays for a pocket-sized projector. Optics Express. 2007; 15: 10483-91. [4]Karp JH, Tremblay E, Hallas JM and Ford JE. Orthogonal and secondary concentration in planar micro-optic solar collectors. Optics Express. 2011; 19: A673-A85. [5]Davies NA, McCormick M and Brewin M. Design and analysis of an image transfer system using microlens arrays. Optical Engineering. 1994; 33: 3624-33. [6]Daly D, Stevens RF, Hutley MC and Davies N. Manufacture of microlenses by melting photoresist. Measurement Science and Technology. 1990; 1: 759-66. [7]Kuo S-M and Lin C-H. Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method. Opt Express. 2010; 18: 19114-9. [8]Mihailov S and Lazare S. Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon. Applied Optics. 1993; 32: 6211-8. [9]Danzebrink R and Aegerter MA. Deposition of micropatterned coating using an ink-jet technique. Thin Solid Films. 1999; 351: 115-8. [10]Ornelas-Rodriguez M and Calixto S. Direct laser writing of mid-infrared microelements on polyethylene material. Optical Engineering. 2001; 40: 921-5. [11]Rogers JD, Karkkainen AHO, Tkaczyk T, Rantala JT and Descour MR. Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass. Optics Express. 2004; 12: 1294-303. [12]Biebuyck HA and Whitesides GM. Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold. Langmuir. 1994; 10: 2790-3. [13]Hartmann DM, Kibar O and Esener SG. Characterization of a polymer microlens fabricated by use of the hydrophobic effect. Optics Letters. 2000; 25: 975-7. [14]Parida OP and Bhat N. Characterization of optical properties of SU-8 and fabrication of optical components. Int Conf on Optics and Photonics. CSIO, Chandigarh, India2009. [15]Zhan Z, Wang K, Yao H and Cao Z. Fabrication and characterization of aspherical lens manipulated by electrostatic field. Applied Optics. 2009; 48: 4375-80. [16]Bateni A, Laughton S, Tavana H, Susnar S, Amirfazli A and Neumann A. Effect of electric fields on contact angle and surface tension of drops. Journal of colloid and interface science. 2005; 283: 215-22. [17]Chang C-J, Yang C-S, Lan L-H, Wang P-C and Tseng F-G. Fabrication of a SU-8-based polymer-enclosed channel with a penetrating UV/ozone-modified interior surface for electrokinetic separation of proteins. Journal of Micromechanics and Microengineering. 2010; 20
ch4
[1]W.-C. Chen, T.-T. Lai, M.-W. Wang, and H.-W. Hung, "An optimization system for LED lens design," Expert Systems with Applications, vol. 38, pp. 11976-11983, 2011. [2]A. Bateni, S. Laughton, H. Tavana, S. Susnar, A. Amirfazli, and A. Neumann, "Effect of electric fields on contact angle and surface tension of drops," Journal of colloid and interface science, vol. 283, pp. 215-222, 2005. [3]S. M. Kuo and C. H. Lin, "Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method," Optics Express, vol. 18, pp. 19114-19119, 2010. [4]Z. Zhan, K. Wang, H. Yao, and Z. Cao, "Fabrication and characterization of aspherical lens manipulated by electrostatic field," Applied Optics, vol. 48, pp. 4375-4380, 2009. [5]J. H. Karp, E. Tremblay, J. M. Hallas, and J. E. Ford, "Orthogonal and secondary concentration in planar micro-optic solar collectors," Optics Express, vol. 19, pp. A673-A685, 2011. [6]K. Y. Chen, H. Y. Lin, M. K. Wei, J. H. Lee, Y. T. Hsiao, C. C. Lin, Y. H. Ho, and J. H. Tsai, "Enhancement and Saturation Phenomena on Luminous Current and Power Efficiencies of Organic Light-Emitting Devices by Attaching Microlens Array Films," Journal of display technology, vol. 7, pp. 242-249, 2011. [7]S. Moller and S. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," Journal of applied physics, vol. 91, p. 3324, 2002. [8]H. A. Biebuyck and G. M. Whitesides, "Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold," Langmuir, vol. 10, pp. 2790-2793, 1994. [9]D. M. Hartmann, O. Kibar, and S. G. Esener, "Characterization of a polymer microlens fabricated by use of the hydrophobic effect," Optics Letters, vol. 25, pp. 975-977, 2000. [10]H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," Journal of Optics A: Pure and Applied Optics, vol. 8, p. S407, 2006. [11]O. P. Parida and N. Bhat, "Characterization of optical properties of SU-8 and fabrication of optical components," in Int. Conf. on Optics and Photonics, CSIO, Chandigarh, India, 2009. [12]S.-M. Kuo and C.-H. Lin, "Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method," Opt. Express, vol. 18, pp. 19114-19119, 2010. [13]C.-J. Chang, C.-S. Yang, L.-H. Lan, P.-C. Wang, and F.-G. Tseng, "Fabrication of a SU-8-based polymer-enclosed channel with a penetrating UV/ozone-modified interior surface for electrokinetic separation of proteins," Journal of Micromechanics and Microengineering, vol. 20, 2010. [14]H. Hillborg, N. Tomczak, A. Olah, H. Schonherr, and G. J. Vancso, "Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked poly (dimethylsiloxane)," Langmuir, vol. 20, pp. 785-794, 2004.
ch5
[1]Vinna Lin, Application of long-focal-length microlens arrays on Shack-Hartmann wavefront sensor, published master thesis, National Taiwan University, Taipei, Taiwan (2011). [2] Platt, B.C. History and principles of Shack-Hartmann wavefront sensing. J. Refract. Surg. 2001, 17, 573-577. [3]Liang, J.; Grimm, B.; Goelz, S.; Bille, J.F. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J. Opt. Soc. Am. A 1994, 11, 1949-1957. [4]Daly, D.; Stevens, R.; Hutley, M.; Davies, N. The manufacture of microlenses by melting photoresist. Meas. Sci. Tech. 1990, 1, 759-766. [5]Sinzinger, S.; Jahns, J. Microoptics; Wiley-VCH: Weinheim, Germany, 2003. [6]Hecht, E. Optics, 4th ed.; Addison-Wesley: Reading, MA, USA, 2001. [7]McDonald, J.C.; Whitesides, G.M. Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Acc. Chem. Res. 2002, 35, 491-499. [8]Fischer, R.E.; Tadic-Galeb, B.; Yoder, P.R. Optical System Design; McGraw-Hill: New York, NY, USA, 2008. [9]Yoon, G.Y.; Jitsuno, T.; Nakatsuka, M.; Nakai, S. Shack Hartmann wave-front measurement with a large F-number plastic microlens array. Appl. Opt. 1996, 35, 188-192. [10]Malacara, D. Optical Shop Testing; Wiley-Blackwell: New York, NY, USA, 2007. [11]Brown, M.; Gong, T.; Neal, D.R.; Roller, J.; Luanava, S.; Urey, H.; Measurement of the dynamic deformation of a high frequency scanning mirror using a Shack-Hartmann wavefront sensor. Proc. SPIE 2001, 4451, 480-488. [12]Greivenkamp, J.E.; Smith, D.G.; Gappinger, R.O.; Williby, G.A. Optical testing using Shack-Hartmann wavefront. Proc. SPIE 2001, 4416, doi:10.1117/12.427063. [13]Greivenkamp, J.E.; Smith, D.G. Graphical approach to Shack-Hartmann lenselet array design. Opt. Eng. 2008, 47, 063601.
ch6
[1]B. Berge, "Liquid lens technology: Principle of electrowetting based lenses and applications to imaging," in Proc. IEEE Int. Conf. Micro Electro Mech. Syst. MEMS, Miami Beach, FL, United states, 2005, pp. 227-230. [2]C. Gabay, et al., "Dynamic study of a varioptic variable focal lens," in Proc SPIE Int Soc Opt Eng, Seattle, WA, United states, 2002, pp. 159-165. [3]D. V. Wick, et al., "Active optical zoom system," in Proc SPIE Int Soc Opt Eng, Orlando, FL, United states, 2005, pp. 151-157. [4]T. Bifano, et al., "Micromachined deformable mirrors for adaptive optics," in Proc SPIE Int Soc Opt Eng, Seattle, WA, United states, 2002, pp. 10-13. [5]G. Vdovin and P. M. Sarro, "Flexible mirror micromachined in silicon," Appl Opt, vol. 34, pp. 2968-2968, 1995. [6]H.-T. Hsieh, et al., "Thin autofocus camera module by a large-stroke micromachined deformable mirror," Opt. Express, vol. 18, pp. 11097-11104, 2010. [7]Y.-W. Yeh, et al., "Organic variable optical attenuator made by compliant fluoropolymer membrane," in IEEE/LEOS Opt. MEMS Int. Conf. Opt. MEMS Applic., Oulu, Finland, 2005, pp. 51-52. [8]Y.-W. Yeh, et al., "Large displacement deformable mirrors made by low stress polyimide membrane," in IEEE/LEOS Int. Conf. Optical MEMS Appl. Conf., Big Sky, MT, United states, 2006, pp. 116-117. [9]J. D. Mansell, et al., "A low-cost compact metric adaptive optics system," in Proc SPIE Int Soc Opt Eng, San Diego, CA, USA, 2007, pp. 67110K-11. [10]C. den Besten, et al., "Polymer bonding of micro-machined silicon structures," in Proc IEEE Micro Electro Mech Syst Workshop, Travemuende, Ger, 1992, pp. 104-109. [11]J. Wang, et al., "Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror," Opt. Express, vol. 17, pp. 6268-6274, 2009. [12]M.-H. Lin, et al., "Auto-focus imaging systems with MEMS deformable mirrors," in Current Developments in Lens Design and Optical Engineering X, San Diego, CA, United states, 2009, p. 74280Q. [13]K.-S. Choi and S.-J. Ko, "New autofocusing technique using the frequency selective weighted median filter for video cameras," in Dig Tech Pap IEEE Int Conf Consum Electron, Los Angeles, CA, USA, 1999, pp. 160-161. [14]N. K. C. Nathaniel, et al., "Practical issues in pixel-based autofocusing for machine vision," in Proc IEEE Int Conf Rob Autom, Seoul, Korea, Republic of, 2001, pp. 2791-2796. [15]J. Schlag, et al., "Implementation of automatic focusing algorithms for a computer vision system with camera control," Proc CMU Robotics Institute, 1983. [16]N. Kehtarnavaz and H. J. Oh, "Development and real-time implementation of a rule-based auto-focus algorithm," Real-Time Imaging, vol. 9, pp. 197-203, 2003. [17]Y. Lu, et al., "Polymorphic optical zoom with MEMS DMs," San Francisco, California, USA, 2011, pp. 79310D-7.
ch7
[1] Hsin-Ta Hsieh, Design and fabrication of compact optical devices: organic deformable mirror and microlens arrays, published Phd dissertation, National Taiwan University, Taipei, Taiwan (2010). [2] R. C. Gutierrez, T. K. Tang, R. Calvet, and E. R. Fossum, “MEMS digital camera,” Proc. SPIE 6502, paper36, 1–8 (2007). [3] S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004). [4] H. Ren, Y. Fan, S. Gauza, and S. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004). [5] J. L. Wang, T. Y. Chen, Y. H. Chien, and G. D. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17(8), 6268–6274 (2009). [6] D. Wick, “Active Optical Zoom System,” US patent 6,977,777 (2005). [7] W. Smith, Modern Optical Engineering: the design of optical systems, 2nd, (McGraw-Hill, 1990), pp.436. [8] E. Hecht, Optics, 4nd (Addison Wesley, 2001). [9] Boston Micromachines Corporation, http://www.bostonmicromachines.com/. [10] V. T. Srikar, and S. M. Spearing, “Materials selection for microfabricated electrostatic actuators,” Sens. Actuators A Phys. 102(3), 279–285 (2003). [11] K. Seidl, J. Knobbe, and H. Gruger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009). [12] J. Wang, T. Chen, C. Liu, C. Chiu, and G. Su, “Polymer Deformable Mirror for Optical Auto Focusing,” ETRI Journal 29(6), 817–819 (2007).
ch8
[1]B. Berge, "Liquid lens technology: Principle of electrowetting based lenses and applications to imaging," in Proc. IEEE Int. Conf. Micro Electro Mech. Syst. MEMS, Miami Beach, FL, United states, 2005, pp. 227-230. [2]T. Bifano, et al., "Micromachined deformable mirrors for adaptive optics," in Proc SPIE Int Soc Opt Eng, Seattle, WA, United states, 2002, pp. 10-13. [3]G. Vdovin and P. M. Sarro, "Flexible mirror micromachined in silicon," Appl Opt, vol. 34, pp. 2968-2968, 1995. [4]K. Oguro, et al., "Polymer film actuator driven by a low voltage," in Proceedings of 4th International Symposium on Micro Machine and Human Science at Nagoya, 1993, pp. 39-40. [5]P. De Gennes, et al., "Mechanoelectric effects in ionic gels," Europhysics Letters, vol. 50, pp. 513-518, 2000. [6]R. Kanno, et al., "Linear approximate dynamic model of ICPF (ionic conducting polymer gel film) actuator," in Proceedings of the 1996 13th IEEE International Conference on Robotics and Automation. Part 1 (of 4), April 22, 1996 - April 28, 1996, Minneapolis, MN, USA, 1996, pp. 219-225. [7]J. Li and S. Nemat-Nasser, "Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane," Mechanics of materials, vol. 32, pp. 303-314, 2000. [8]H.-T. Hsieh, et al., "Thin autofocus camera module by a large-stroke micromachined deformable mirror," Opt. Express, vol. 18, pp. 11097-11104, 2010.
|