跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏祥鈞
研究生(外文):Hsiang-Chun Wei
論文名稱:利用親水性質發展之自組式微透鏡與以離子導電高分子金屬複合物製備之低致動電壓可形變面鏡
論文名稱(外文):Self-assembly microlens by hydrophilic effect and low actuation-voltage deformable mirror by ionic polymer metallic composite
指導教授:蘇國棟
指導教授(外文):Guo-Dung John Su
口試委員:林晃巖許巍耀趙基揚馮國華
口試日期:2011-12-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:155
中文關鍵詞:微透鏡SU-8光阻親水性波前感測器可形變面鏡離子導電高分子金屬複合物
外文關鍵詞:microlens arraySU-8 photoresisthydrophilicwavefront sensordeformable mirrorionic-conductive polymer metal composite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:431
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們的研究涵蓋了兩大主題,分別為微透鏡陣列(microlens array)以及可形變面鏡(deformable mirror)。經由整合此二元件與一般光學元件後,發展光學系統於不同的應用。
自組式微透鏡陣列(self-assemble microlens array),利用了紫外線臭氧清潔機將SU-8負型光阻表面改質,產生週期性排列的親水性區域,再利用表面張力將稀釋過後的SU-8光阻自行聚集在此親水性區域之中,進而形成球面的液態平凸透鏡,最後經由紫外光的固化後成了固體的微透鏡陣列。SU-8光阻具有良好的化學穩定性及機械強度,其光學吸收率非常低,加上基板使用的是透明玻璃,所以製作出來的微透鏡陣列是穿透式的,不須要再另外經過翻模的方式來製作,大幅簡化了製作的流程及減少製程時間。此方法具有低成本、低溫、省時之特點。另外,SU-8光阻本身是極性材料,藉由外加的電場可以增加表面的曲率,藉此進一步可以產生更短焦距的微透鏡,同時也使表面的粗糙度降低,提高其光學性質。同時,使用這種方法,我們可以精準地將微透鏡製作在發光二極體(LED)上,提高提取效率並增加發散角。另外,藉由實驗室發展的雙層熱回流式長焦長微透鏡陣列,我們發展了更為靈敏、動態範圍更廣的薛克-哈特曼波前感測器(Shack-Hartmann wavefront sensor),同時針對長焦距及短焦距的影響與商用的感測器做比較。
我們利用了實驗室發展的微機電有機可形變面鏡 (micro electro mechanical systems organic deformable mirror),配合光學鏡頭元件設計了可變對焦平面的光學模組,搭配Tenengrad影像處理方法及百分率降幅方法(percentage drop method)組成的自動對焦演算方法,成功地完成自動對焦光學模組。由於微機電有機可形變面鏡的驅動電壓較高(約150伏特),所以我們進而採用了高分子致動器-離子導電高分子金屬複合物(ionic-conductive polymer metal composite, IPMC),其具有低致動電壓與大位移量的特性。我們藉由發展此材料的灰盒子理論,搭配ANSYS有限元素分析軟體,設計了齒輪狀的離子導電高分子金屬複合物可形變面鏡(gear shaped IPMC DM),其特點為低致動電壓及較廣的焦距變化。同時由於其可雙向致動的特性,可製作出同時具有聚焦及散焦能力的可形變面鏡。
最後,我們希望此篇論文可以啟發相關的研究,並對後續的發展有些許貢獻。

In this dissertation, there are two major topics of microlens array (MLA) and deformable mirror (DM). By integrating these two components and ordinary optical component, we developed different optics system in different applications.
Self-assembled microlens array was fabricated by hydrophilic effect using Ultraviolet (UV)/ozone modification on glass substrate. The modification on SU-8 photoresist produced periodic array of hydrophilic areas on the surface by the use of shadow mask. Afterwards, the substrate was dipped in and out of diluted SU-8 photoresist. Therefore, the liquid self-assembled MLA was formed. Finally, the solid MLA was cured by UV light. SU-8 photoresist has good chemical and mechanical strength, so it is suitable for MLA. Besides, the fabricated MLA is transparent so that there has no need for etch transferring. It decreases the process complexity a lot. Meanwhile, because of the polar molecular of SU-8 photoresist, the curvature of the microlens can be enlarged by applying external electric field. The surface roughness could be improved as well. This method provides a low cost, low time consumption, no etch transfer, low temperature, and no photo lithography method to fabricate MLA. We applied this method to fabricated microlens on a light emitting diode (LED) chip with precisely alignment. That improved the extraction efficiency and increased the viewing angle. Besides, we developed a more sensitive and larger dynamic ranged Shack-Hartmann wavefront sensor by using the developed long focal length MLA using double layer thermal reflow method. We also compared it with the commercial product.
We developed a thin autofocus camera module by using the developed micro electro mechanical systems (MEMS) organic deformable mirror (DM). It included a focus-varying optical system, and autofocus algorithm using Tenengrad image sharpness function and percentage-drop method. Besides, because of the high actuation voltage (~150 V), we adopt an ionic-conductive polymer composite to fabricate DM. IPMC is a polymer actuator with the advantage of low actuation voltage and large displacement. We built a simplified grey box model and simulate the deformation shape by using finite element method software, ANSYSR. A gear shaped IPMC DM was designed and demonstrated. It had the advantage of low actuation voltage and large optical power. Meanwhile, because of the bi-directional deformation ability, the DM with both positive and negative optical power was achieved.
Finally, we believe these research topics could inspire the related researchers and might have some benefit to the human.

論文口試委員審定書
誌謝 I
中文摘要 II
ABSTRACT IV
CONTENTS VI
LIST OF FIGURES X
LIST OF TABLES XVIII
Chapter 1 Dissertation Organization & Introduction 1
1.1 Dissertation organization 1
1.2 General introduction 2
1.2.1 Review of microlens array fabrication technologies 2
1.2.2 Review of Shack-Hartmann wavefront sensor 6
1.2.3 Review of method to achieve auto-focus function 9
References 13
PART I MICROLENS ARRAY 14
Chapter 2 Using Hydrophilic Effect to Fabricate Self-Assembled Microlens Array by UV/ozone Modification 15
2.1 Introduction 16
2.2 Fabrication Process 17
2.3 Experimental Results and Discussions 19
2.4 Conclusions 27
References 28
Chapter 3 Fabrication of Transparent and Self-Assembled Microlens Array Using Hydrophilic Effect and Electric Fielding Pulling 30
3.1 Introduction 31
3.2 The working mechanism 32
3.3 Fabrication processes 35
3.3.1 SU-8 photoresist base layer 36
3.3.2 UV/ozone treatment 37
3.3.3 Dipping in and out of diluted SU-8 photoresist 37
3.3.4 Applying electric field and UV curing 38
3.4 Experimental results and discussions 39
3.5 Conclusions 48
References 49
Chapter 4 Self-assembled microlens on top of light emitting diodes using hydrophilic effect for improving extraction efficiency and increasing viewing angle 51
4.1 Introduction 52
4.2 The working mechanism 53
4.3 Fabrication process 56
4.4 LED encapsulation 56
4.4.1 SU-8 photoresist base layer 57
4.4.2 UV/ozone treatment 57
4.4.3 Dipping in and out of diluted SU-8 photoresist & UV curing 58
4.5 Optical System Simulation and experimental results 59
4.6 Conclusions 68
References 69
Chapter 5 An Optical Wavefront Sensor Based on a Double Layer Microlens Array 71
5.1 Introduction 72
5.2 Design of Double Layer Microlens Array 73
5.3 Fabrication Processes and Results 75
5.4 Wavefront Sensor Computing Algorithm and Measurement Results 79
5.5 Conclusions 88
References 90
PART II DEFORMABLE MIRROR 91
Chapter 6 Controlling a MEMS Deformable Mirror in a Miniature Auto-Focusing Imaging System 92
6.1 Introduction 93
6.2 Deformable Mirror and Optical System Design 94
6.3 Tenengrad Method and Percentage-Drop Searching Algorithm 101
6.4 Experiment Results and Discussion 105
6.5 SUMMARY 109
References 111
Chapter 7 Thin autofocus camera module by a large-stroke micromachined deformable mirror 113
7.1 Introduction 114
7.2 Optical System Design with Autofocus Function 115
7.3 Device Fabrication and Experimental Results 117
7.4 Conclusion 127
References 128
Chapter 8 A Low Voltage Deformable Mirror using Ionic-conductive Polymer Metal Composite 129
8.1 Introduction 130
8.2 Principle of IPMC 132
8.3 FEM simulation model of cantilever beam 133
8.4 Simulation model and experimental verification 137
8.5 Gear shaped IPMC and experimental result 139
8.6 SUMMARY 144
References 146
Chapter 9 Conclusions and Future Work 147
9.1 Dissertation conclusions 147
9.1.1 Microlens arrays 147
9.1.2 Deformable mirrors 148
9.2 Suggestions for future work 149
9.2.1 The focus microlens on LED by using thicker PDMS. 149
9.2.2 The microlens application on concentrated solar cell. 150
9.2.3 The improvement of surface roughness for IPMC DM by the use of PDMS buffered layer 151
Publication List 153


ch1
[1]H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, “Comparing Glass and Plastic Refractive Microlenses Fabricated with Different Technologies,” J. Opt. A: Pure Appl. Opt., vol. 8, pp. 407-429. (2006)
[2]Z. D. Popovic, R. A. Sprague, and G. A. Neville Connell, “Technique for Monolithic Fabrication of Microlens Arrays,” Applied Optics, vol. 27, no. 7, pp. 1281-1284. (1988)
[3]D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The Manufacture of Microlenses by Melting Photoresist,” Meas. Sci. Technol, vol. 1, pp. 759-766. (1990)
[4]T. R. Jay et al, “Preshaping Photoresist for Refractive Microlens Fabrication,” Opt. Eng., vol. 33, pp. 3552-3555. (1994)
[5]H. Ottevaere, B. Volckaerts, J. Lamprecht, A. Hermanne, I. Veretennicoff, and H. Thienpont, “2D Plastic Microlens Arrays by Deep Lithography with Protons: Fabrication and Characterization,” J. Opt. A: Pure Appl. Opt., vol. 4, pp. 22-28. (2002)
[6]K. Naessens, H. Ottevaere, R. Baets, P. Van Daele, and H. Thienpont, “Direct Writing of Microlenses in Polycarbonate with Excimer Laser Ablation,” Appl. Opt., vol. 42, pp. 6349-6359. (2003)
[7]D. L. MacFarlane, V. Narayan, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet Fabrication of Microlens Arrays,” IEEE PTL, vol. 6, pp. 1112-4. (1994)
[8]L. N. Thibos, “Principles of Hartmann-Shack Aberrometry,” Journal of Refractive Surgery, vol. 16, pp. 563-565. (2000)
[9]B. Platt, R. Shack, “History and Principles of Shack-Hartmann Wavefront Sensing,” Journal of Refractive Surgery, vol. 17, pp. 573-577. (2001)
[10]J. E. Greivenkamp, D. G. Smith, “Graphical Approach to Shack-Hartmann Lenslet Array Design,” Proceedings of SPIE, vol. 47(6), pp. 063601-1 – 063601-4. (2008)
[11]World Forum for Harmonization of Vehicle Regulations (WP.29) [cited; Available from : http://www.unece.org/trans/main/wp29/wp29regs.html
[12]Kelley, Charles R., Ketchel, James M. and Strudwick, Peter H., “Experimental Evaluation of Head-Up Display High Brightness Requirements”, Nov. 1965.
[13]Robert D. Brown, David H. Modro, Michael R. Greer, “High resolution LCD projection based color head-up display”, Cockpit Displays VIII: Displays for Defense Applications, Proceedings of SPIE Vol. 4362, 2001
[14]Privacy glass. [ cited; Availabel from: http://www.polytronix.com/privacyglass_specs.htm
[15]Smart film. [ cited; Available from: http://www.polytron.com.tw/
[16]Freeman; Glenn E., PPG Industries Ohio, Inc., “Windshield for head-up display system” United States Patent No. US 6636370 B2, Field: August 21, 1998, Date of patent: October 21, 2003.
[17]Weber; Michael F., Ouderkirk; Andrew J., Wheatley; John A., Brodd; Jonathan, 3M Innovative Properties Company, “Head-up display with narrow band reflective polarizer”, United States Patent No. US 7123418 B2

ch2

[1]H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, "Coupling efficiency enhancement in organic light-emitting devices using microlens array - Theory and experiment," IEEE/OSA Journal of Display Technology, vol. 1, pp. 278-282, 2005.
[2]J.-W. Pan, C.-M. Wang, H.-C. Lan, W.-S. Sun, and J.-Y. Chang, "Homogenized LED-illumination using microlens arrays for a pocket-sized projector," Optics Express, vol. 15, pp. 10483-10491, 2007.
[3]G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, "Shack Hartmann wave-front measurement with a large F-number plastic microlens array," Applied Optics, vol. 35, pp. 188-188, 1996.
[4]N. A. Davies, M. McCormick, and M. Brewin, "Design and analysis of an image transfer system using microlens arrays," Optical Engineering, vol. 33, pp. 3624-3633, 1994.
[5]S. Sinzinger and J. Jahns, Microoptics: Wiley-VCH, 1999.
[6]H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," Journal of Optics A: Pure and Applied Optics, vol. 8, p. S407, 2006.
[7]H. A. Biebuyck and G. M. Whitesides, "Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold," Langmuir, vol. 10, pp. 2790-2793, 1994.
[8]D. M. Hartmann, O. Kibar, and S. G. Esener, "Characterization of a polymer microlens fabricated by use of the hydrophobic effect," Optics Letters, vol. 25, pp. 975-977, 2000.
[9]O. P. Parida and N. Bhat, "Characterization of optical properties of SU-8 and fabrication of optical components," in Int. Conf. on Optics and Photonics, CSIO, Chandigarh, India, 2009.
[10]S.-M. Kuo and C.-H. Lin, "Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method," Opt. Express, vol. 18, pp. 19114-19119, 2010.
[11]C.-J. Chang, C.-S. Yang, L.-H. Lan, P.-C. Wang, and F.-G. Tseng, "Fabrication of a SU-8-based polymer-enclosed channel with a penetrating UV/ozone-modified interior surface for electrokinetic separation of proteins," Journal of Micromechanics and Microengineering, vol. 20, 2010.
[12]K. Oura, Surface science: an introduction: Springer, 2003.

ch3

[1]Peng H, Ho YL, Yu X-J, Wong M and Kwok H-S. Coupling efficiency enhancement in organic light-emitting devices using microlens array - Theory and experiment. IEEE/OSA Journal of Display Technology. 2005; 1: 278-82.
[2]Yoon GY, Jitsuno T, Nakatsuka M and Nakai S. Shack Hartmann wave-front measurement with a large F-number plastic microlens array. Applied Optics. 1996; 35: 188-.
[3]Pan J-W, Wang C-M, Lan H-C, Sun W-S and Chang J-Y. Homogenized LED-illumination using microlens arrays for a pocket-sized projector. Optics Express. 2007; 15: 10483-91.
[4]Karp JH, Tremblay E, Hallas JM and Ford JE. Orthogonal and secondary concentration in planar micro-optic solar collectors. Optics Express. 2011; 19: A673-A85.
[5]Davies NA, McCormick M and Brewin M. Design and analysis of an image transfer system using microlens arrays. Optical Engineering. 1994; 33: 3624-33.
[6]Daly D, Stevens RF, Hutley MC and Davies N. Manufacture of microlenses by melting photoresist. Measurement Science and Technology. 1990; 1: 759-66.
[7]Kuo S-M and Lin C-H. Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method. Opt Express. 2010; 18: 19114-9.
[8]Mihailov S and Lazare S. Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon. Applied Optics. 1993; 32: 6211-8.
[9]Danzebrink R and Aegerter MA. Deposition of micropatterned coating using an ink-jet technique. Thin Solid Films. 1999; 351: 115-8.
[10]Ornelas-Rodriguez M and Calixto S. Direct laser writing of mid-infrared microelements on polyethylene material. Optical Engineering. 2001; 40: 921-5.
[11]Rogers JD, Karkkainen AHO, Tkaczyk T, Rantala JT and Descour MR. Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass. Optics Express. 2004; 12: 1294-303.
[12]Biebuyck HA and Whitesides GM. Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold. Langmuir. 1994; 10: 2790-3.
[13]Hartmann DM, Kibar O and Esener SG. Characterization of a polymer microlens fabricated by use of the hydrophobic effect. Optics Letters. 2000; 25: 975-7.
[14]Parida OP and Bhat N. Characterization of optical properties of SU-8 and fabrication of optical components. Int Conf on Optics and Photonics. CSIO, Chandigarh, India2009.
[15]Zhan Z, Wang K, Yao H and Cao Z. Fabrication and characterization of aspherical lens manipulated by electrostatic field. Applied Optics. 2009; 48: 4375-80.
[16]Bateni A, Laughton S, Tavana H, Susnar S, Amirfazli A and Neumann A. Effect of electric fields on contact angle and surface tension of drops. Journal of colloid and interface science. 2005; 283: 215-22.
[17]Chang C-J, Yang C-S, Lan L-H, Wang P-C and Tseng F-G. Fabrication of a SU-8-based polymer-enclosed channel with a penetrating UV/ozone-modified interior surface for electrokinetic separation of proteins. Journal of Micromechanics and Microengineering. 2010; 20

ch4

[1]W.-C. Chen, T.-T. Lai, M.-W. Wang, and H.-W. Hung, "An optimization system for LED lens design," Expert Systems with Applications, vol. 38, pp. 11976-11983, 2011.
[2]A. Bateni, S. Laughton, H. Tavana, S. Susnar, A. Amirfazli, and A. Neumann, "Effect of electric fields on contact angle and surface tension of drops," Journal of colloid and interface science, vol. 283, pp. 215-222, 2005.
[3]S. M. Kuo and C. H. Lin, "Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method," Optics Express, vol. 18, pp. 19114-19119, 2010.
[4]Z. Zhan, K. Wang, H. Yao, and Z. Cao, "Fabrication and characterization of aspherical lens manipulated by electrostatic field," Applied Optics, vol. 48, pp. 4375-4380, 2009.
[5]J. H. Karp, E. Tremblay, J. M. Hallas, and J. E. Ford, "Orthogonal and secondary concentration in planar micro-optic solar collectors," Optics Express, vol. 19, pp. A673-A685, 2011.
[6]K. Y. Chen, H. Y. Lin, M. K. Wei, J. H. Lee, Y. T. Hsiao, C. C. Lin, Y. H. Ho, and J. H. Tsai, "Enhancement and Saturation Phenomena on Luminous Current and Power Efficiencies of Organic Light-Emitting Devices by Attaching Microlens Array Films," Journal of display technology, vol. 7, pp. 242-249, 2011.
[7]S. Moller and S. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays," Journal of applied physics, vol. 91, p. 3324, 2002.
[8]H. A. Biebuyck and G. M. Whitesides, "Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold," Langmuir, vol. 10, pp. 2790-2793, 1994.
[9]D. M. Hartmann, O. Kibar, and S. G. Esener, "Characterization of a polymer microlens fabricated by use of the hydrophobic effect," Optics Letters, vol. 25, pp. 975-977, 2000.
[10]H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," Journal of Optics A: Pure and Applied Optics, vol. 8, p. S407, 2006.
[11]O. P. Parida and N. Bhat, "Characterization of optical properties of SU-8 and fabrication of optical components," in Int. Conf. on Optics and Photonics, CSIO, Chandigarh, India, 2009.
[12]S.-M. Kuo and C.-H. Lin, "Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method," Opt. Express, vol. 18, pp. 19114-19119, 2010.
[13]C.-J. Chang, C.-S. Yang, L.-H. Lan, P.-C. Wang, and F.-G. Tseng, "Fabrication of a SU-8-based polymer-enclosed channel with a penetrating UV/ozone-modified interior surface for electrokinetic separation of proteins," Journal of Micromechanics and Microengineering, vol. 20, 2010.
[14]H. Hillborg, N. Tomczak, A. Olah, H. Schonherr, and G. J. Vancso, "Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked poly (dimethylsiloxane)," Langmuir, vol. 20, pp. 785-794, 2004.

ch5

[1]Vinna Lin, Application of long-focal-length microlens arrays on Shack-Hartmann wavefront sensor, published master thesis, National Taiwan University, Taipei, Taiwan (2011).
[2] Platt, B.C. History and principles of Shack-Hartmann wavefront sensing. J. Refract. Surg. 2001, 17, 573-577.
[3]Liang, J.; Grimm, B.; Goelz, S.; Bille, J.F. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J. Opt. Soc. Am. A 1994, 11, 1949-1957.
[4]Daly, D.; Stevens, R.; Hutley, M.; Davies, N. The manufacture of microlenses by melting photoresist. Meas. Sci. Tech. 1990, 1, 759-766.
[5]Sinzinger, S.; Jahns, J. Microoptics; Wiley-VCH: Weinheim, Germany, 2003.
[6]Hecht, E. Optics, 4th ed.; Addison-Wesley: Reading, MA, USA, 2001.
[7]McDonald, J.C.; Whitesides, G.M. Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Acc. Chem. Res. 2002, 35, 491-499.
[8]Fischer, R.E.; Tadic-Galeb, B.; Yoder, P.R. Optical System Design; McGraw-Hill: New York, NY, USA, 2008.
[9]Yoon, G.Y.; Jitsuno, T.; Nakatsuka, M.; Nakai, S. Shack Hartmann wave-front measurement with a large F-number plastic microlens array. Appl. Opt. 1996, 35, 188-192.
[10]Malacara, D. Optical Shop Testing; Wiley-Blackwell: New York, NY, USA, 2007.
[11]Brown, M.; Gong, T.; Neal, D.R.; Roller, J.; Luanava, S.; Urey, H.; Measurement of the dynamic deformation of a high frequency scanning mirror using a Shack-Hartmann wavefront sensor. Proc. SPIE 2001, 4451, 480-488.
[12]Greivenkamp, J.E.; Smith, D.G.; Gappinger, R.O.; Williby, G.A. Optical testing using
Shack-Hartmann wavefront. Proc. SPIE 2001, 4416, doi:10.1117/12.427063.
[13]Greivenkamp, J.E.; Smith, D.G. Graphical approach to Shack-Hartmann lenselet array design. Opt. Eng. 2008, 47, 063601.

ch6

[1]B. Berge, "Liquid lens technology: Principle of electrowetting based lenses and applications to imaging," in Proc. IEEE Int. Conf. Micro Electro Mech. Syst. MEMS, Miami Beach, FL, United states, 2005, pp. 227-230.
[2]C. Gabay, et al., "Dynamic study of a varioptic variable focal lens," in Proc SPIE Int Soc Opt Eng, Seattle, WA, United states, 2002, pp. 159-165.
[3]D. V. Wick, et al., "Active optical zoom system," in Proc SPIE Int Soc Opt Eng, Orlando, FL, United states, 2005, pp. 151-157.
[4]T. Bifano, et al., "Micromachined deformable mirrors for adaptive optics," in Proc SPIE Int Soc Opt Eng, Seattle, WA, United states, 2002, pp. 10-13.
[5]G. Vdovin and P. M. Sarro, "Flexible mirror micromachined in silicon," Appl Opt, vol. 34, pp. 2968-2968, 1995.
[6]H.-T. Hsieh, et al., "Thin autofocus camera module by a large-stroke micromachined deformable mirror," Opt. Express, vol. 18, pp. 11097-11104, 2010.
[7]Y.-W. Yeh, et al., "Organic variable optical attenuator made by compliant fluoropolymer membrane," in IEEE/LEOS Opt. MEMS Int. Conf. Opt. MEMS Applic., Oulu, Finland, 2005, pp. 51-52.
[8]Y.-W. Yeh, et al., "Large displacement deformable mirrors made by low stress polyimide membrane," in IEEE/LEOS Int. Conf. Optical MEMS Appl. Conf., Big Sky, MT, United states, 2006, pp. 116-117.
[9]J. D. Mansell, et al., "A low-cost compact metric adaptive optics system," in Proc SPIE Int Soc Opt Eng, San Diego, CA, USA, 2007, pp. 67110K-11.
[10]C. den Besten, et al., "Polymer bonding of micro-machined silicon structures," in Proc IEEE Micro Electro Mech Syst Workshop, Travemuende, Ger, 1992, pp. 104-109.
[11]J. Wang, et al., "Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror," Opt. Express, vol. 17, pp. 6268-6274, 2009.
[12]M.-H. Lin, et al., "Auto-focus imaging systems with MEMS deformable mirrors," in Current Developments in Lens Design and Optical Engineering X, San Diego, CA, United states, 2009, p. 74280Q.
[13]K.-S. Choi and S.-J. Ko, "New autofocusing technique using the frequency selective weighted median filter for video cameras," in Dig Tech Pap IEEE Int Conf Consum Electron, Los Angeles, CA, USA, 1999, pp. 160-161.
[14]N. K. C. Nathaniel, et al., "Practical issues in pixel-based autofocusing for machine vision," in Proc IEEE Int Conf Rob Autom, Seoul, Korea, Republic of, 2001, pp. 2791-2796.
[15]J. Schlag, et al., "Implementation of automatic focusing algorithms for a computer vision system with camera control," Proc CMU Robotics Institute, 1983.
[16]N. Kehtarnavaz and H. J. Oh, "Development and real-time implementation of a rule-based auto-focus algorithm," Real-Time Imaging, vol. 9, pp. 197-203, 2003.
[17]Y. Lu, et al., "Polymorphic optical zoom with MEMS DMs," San Francisco, California, USA, 2011, pp. 79310D-7.

ch7

[1] Hsin-Ta Hsieh, Design and fabrication of compact optical devices: organic deformable mirror and microlens arrays, published Phd dissertation, National Taiwan University, Taipei, Taiwan (2010).
[2] R. C. Gutierrez, T. K. Tang, R. Calvet, and E. R. Fossum, “MEMS digital camera,” Proc. SPIE 6502, paper36, 1–8 (2007).
[3] S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[4] H. Ren, Y. Fan, S. Gauza, and S. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lens,” Jpn. J. Appl. Phys. 43(2), 652–653 (2004).
[5] J. L. Wang, T. Y. Chen, Y. H. Chien, and G. D. Su, “Miniature optical autofocus camera by micromachined fluoropolymer deformable mirror,” Opt. Express 17(8), 6268–6274 (2009).
[6] D. Wick, “Active Optical Zoom System,” US patent 6,977,777 (2005).
[7] W. Smith, Modern Optical Engineering: the design of optical systems, 2nd, (McGraw-Hill, 1990), pp.436.
[8] E. Hecht, Optics, 4nd (Addison Wesley, 2001).
[9] Boston Micromachines Corporation, http://www.bostonmicromachines.com/.
[10] V. T. Srikar, and S. M. Spearing, “Materials selection for microfabricated electrostatic actuators,” Sens. Actuators A Phys. 102(3), 279–285 (2003).
[11] K. Seidl, J. Knobbe, and H. Gruger, “Design of an all-reflective unobscured optical-power zoom objective,” Appl. Opt. 48(21), 4097–4107 (2009).
[12] J. Wang, T. Chen, C. Liu, C. Chiu, and G. Su, “Polymer Deformable Mirror for Optical Auto Focusing,” ETRI Journal 29(6), 817–819 (2007).

ch8

[1]B. Berge, "Liquid lens technology: Principle of electrowetting based lenses and applications to imaging," in Proc. IEEE Int. Conf. Micro Electro Mech. Syst. MEMS, Miami Beach, FL, United states, 2005, pp. 227-230.
[2]T. Bifano, et al., "Micromachined deformable mirrors for adaptive optics," in Proc SPIE Int Soc Opt Eng, Seattle, WA, United states, 2002, pp. 10-13.
[3]G. Vdovin and P. M. Sarro, "Flexible mirror micromachined in silicon," Appl Opt, vol. 34, pp. 2968-2968, 1995.
[4]K. Oguro, et al., "Polymer film actuator driven by a low voltage," in Proceedings of 4th International Symposium on Micro Machine and Human Science at Nagoya, 1993, pp. 39-40.
[5]P. De Gennes, et al., "Mechanoelectric effects in ionic gels," Europhysics Letters, vol. 50, pp. 513-518, 2000.
[6]R. Kanno, et al., "Linear approximate dynamic model of ICPF (ionic conducting polymer gel film) actuator," in Proceedings of the 1996 13th IEEE International Conference on Robotics and Automation. Part 1 (of 4), April 22, 1996 - April 28, 1996, Minneapolis, MN, USA, 1996, pp. 219-225.
[7]J. Li and S. Nemat-Nasser, "Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane," Mechanics of materials, vol. 32, pp. 303-314, 2000.
[8]H.-T. Hsieh, et al., "Thin autofocus camera module by a large-stroke micromachined deformable mirror," Opt. Express, vol. 18, pp. 11097-11104, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top