跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志隆
研究生(外文):LIN CHIH LUNG
論文名稱:製備(Bi0.9Sr0.1)(Fe1-XCoX)O3磁電複合材料及相關性質研究
論文名稱(外文):Preparation and studies of (Bi0.9Sr0.1)(Fe1-XCoX)O3 magnetoelectric composites
指導教授:何志松
口試委員:洪東興粘譽薰
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:100
中文關鍵詞:BiFeO3磁電複材介電常數介電損失
外文關鍵詞:BiFeO3magnetoelectric compositesdielectric constantdielectric loss
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
在 本 論 文 中 , 我 們 利 用 溶 膠 - 凝膠法與固態反應法製備
(Bi0.9Sr0.1)(Fe1-xCox)O3 (x=0, 0.025, 0.05, 0.075, 0.1) 磁電複材,並觀察其
熱膨脹係數、微結構、及介電性質的變化。我們發現當添加第三元素Sr
後對於純BFO的性質有顯著的影響。
BSFCO複材在空氣環境下經650~900 °C的溫度燒結,在相同燒結時
間下,其相對密度皆能達到88%以上。熱膨脹係數溫度量測範圍為20~180
°C,溶膠-凝膠法製備之磁電塊材中,以純BFO有最小之熱膨脹係數,其
值為8.09 ppm/°C﹔最大值為添加Co 10 mol%之磁電塊材,其值為11.65
ppm/°C。在相同組成比例下,其值皆略大於固態反應法製備之複材。
以阻抗分析儀量測介電性質,掃描頻率為100 Hz ~ 40 MHz,在頻率
為40 MHz時,BSFO的介電常數為81.15,其值大於純BFO之53.69,再隨
著Co的添加量增加,值略微下降。在相同頻率下,BSFO磁電塊材的介
電損失為0.16,其值小於純BFO之0.35。在相同組成比例下,其值皆略小
於固態反應法製備之複材。
利用網路分析儀作高頻量測,掃描頻率為6 ~ 13 GHz,溶膠-凝膠法
及固態反應法製備之複材添加Co 2.5 mol%時,在掃描頻率7 GHz下,分
別有最大介電常數值5.36及5.49。
In this study, we reported on the thermal expansion coefficients,
microstructural and dielectric properties of (Bi0.9Sr0.1)(Fe1-xCox)O3 (x=0,
0.025, 0.05, 0.075, 0.1) magnetoelectric composites prepared by sol-gel
method and solid state method. Doping Sr has a strong influence on the
properties of BSFCO composites.
The thermal expansion coefficients were measured under an air
atmosphere from 20 to 180 °C. The thermal expansion coefficient of pure
BFO prepared by sol-gel method has a minimum value of 8.09 ppm/°C.
Nevertheless, the BSFCO composites doping 10 mol% Co has a maximum
value of 11.65 ppm/°C.
The dielectric properties were measured by impedance analyzer in the
frequency range from 100 Hz to 40 MHz. The dielectric constant of BSFO
ceramic is 81.15, which is higher than that of pure BFO of 53.69 at 40 MHz.
However, dielectric constant of BSFCO decreases with increasing Co%. The
dielectric loss of BSFO ceramic is 0.16, which is lower then that of pure
BFO of 0.35 at 40 MHz. The dielectric loss of BSFCO decreases with
increasing Co%.
The permittivities were measured by network analyzer in the frequency
range from 6 to 13 GHz.
The BSFCO composites of doping 2.5 mol% Co have maximum values
of 5.36 and 5.49 at 7 GHz which were prepared by sol-gel and solid state
methods, respectively.
目錄
摘要 ....................................................................... I
ABSTRACT .................................................................. II
目錄 ...................................................................... III
圖目錄 ..................................................................... VI
表目錄 ..................................................................... IX
第一章 緒論.................................................................. 1
1-1 前言 ................................................................... 1
1-2 研究目的與動機 ........................................................... 2
第二章 文獻回顧 .............................................................. 3
2-1 介電材料 ................................................................ 3
2-1-1 鈣鈦礦材料特性 ......................................................... 3
2-1-2 極化機構 (polarized mechanism) ......................................... 7
2-1-3 介電性質 .............................................................. 11
2-2 磁性材料 ................................................................ 15
2-2-1 磁性原理 .............................................................. 15
2-2-2 磁性分類 .............................................................. 19
2-2-3 磁性性質 .............................................................. 22
2-3 鉍鐵氧(BiFeO3)的基本性質 ................................................. 24
2-3-1 晶體結構 .............................................................. 25
2-3-2 鐵電性質 .............................................................. 27
2-3-3 磁性質 ................................................................ 28
2-4 溶膠-凝膠法 (sol-gel method) ............................................ 30
2-5 固態反應法 (solid state method) ......................................... 34
第三章 實驗方法及設備 ......................................................... 37
3-1 實驗藥品 ................................................................ 41
3-2 粉體之製備 ............................................................... 42
3-2-1 溶膠-凝膠法製備粉體 ..................................................... 42
3-2-2 固態反應法製備粉體 ...................................................... 42
3-3 磁電塊材之製備 ........................................................... 43
3-4 性質測量與分析 ........................................................... 45
3-4-1 塊材密度量測 ........................................................... 45
3-4-2 X 光繞射分析儀 ( XRD) .................................................. 45
3-4-3 掃描式電子顯微鏡 ( SEM) ................................................. 45
3-4-4 熱機械分析儀 ( TMA) .................................................... 46
3-4-5 介電性質量測 ............................................................ 46
3-4-6 微波性質量測 ............................................................ 46
第四章 結果與討論 .............................................................. 47
4-1 密度測量 .................................................................. 47
4-2 XRD 結構分析 .............................................................. 50
4-3 斷面微結構 ................................................................ 54
4-4 熱性質分析 ................................................................ 61
4-5 介電性質分析 .............................................................. 63
4-6 微波訊號分析 .............................................................. 75
第五章 結論.................................................................... 77
5-1 溶膠-凝膠法 ............................................................... 78
5-2 固態反應法 ................................................................ 80
第六章 參考文獻 ................................................................ 82
附錄 .......................................................................... 87
圖目錄
圖 2.1 鈣鈦礦結構 ............................................................... 5
圖2.2 鈦酸鋇於(100)方向極化時,鈦離子相對於氧離子的位移量 ........................... 5
圖2.3 隨溫度的改變,鈦酸鋇結構晶體上的變化 ......................................... 6
圖2.4 極化的四種物理機制 ......................................................... 9
圖2.5 不同頻率對不同極化機構之介電常數及介電損失的影響 .............................. 10
圖2.6 室溫下,離子遷移損失、離子震動與變形損失在tan δ 中所佔的比例.................... 14
圖2.7 電子之軌道角動量與軌道磁矩 .................................................. 17
圖2.8 電子之自旋角動量與自旋磁矩 .................................................. 17
圖2.9 磁交互作用力 .............................................................. 18
圖2.10 磁滯曲線 ................................................................. 23
圖2.11 BiFeO3 結構圖 ............................................................ 26
圖2.12 BiFeO3 溫度分布圖 ......................................................... 26
圖2.13 BiFeO3 六方晶的自旋結構 .................................................... 29
圖2.14 溶膠凝膠法變化示意圖 ........................................................ 33
圖2.15 溶膠-凝膠法的反應程序 ....................................................... 33
圖2.16 不同轉速下,磨球在罐中運動的情形 ............................................. 36
圖3.1 溶膠-凝膠法製作磁電塊材與薄膜流程圖 ........................................... 38
圖3.2 固態反應法製作磁電塊材流程圖 .................................................. 39
圖3.3 BSFCO 塊材性質量測流程圖 ..................................................... 40
圖4.1 溶膠-凝膠法和固態反應法添加不同比例Co 相對密度關係圖 ............................. 49
圖4.2 標準BiFeO3 XRD 繞射圖譜 ...................................................... 52
圖4.3 溶膠-凝膠法Co 添加比例之XRD 量測結果 ........................................... 52
圖4.4 固態反應法Co 添加比例之XRD 量測結果 ............................................ 53
圖4.5 溶膠-凝膠法添加不同mol%比例Co 之磁電塊材SEM 微結構圖 ,放大倍率為3000 倍 .......... 56
圖4.6 固態反應法添加不同mol%比例Co之磁電塊材SEM微結構圖,放大倍率為3000 倍 .............. 57
圖4.7 溶膠-凝膠法添加不同mol%比例Co 之磁電塊材SEM 微結構圖 ,放大倍率為10000 倍 ......... 58
圖4.8 固態反應法添加不同mol%比例Co之磁電塊材SEM微結構圖,放大倍率為10000 倍。 ........... 59
圖4.9 不同Co 添加比例的BSFCO 磁電塊材之熱膨脹係數變化圖 ............................... 62
圖4.10 溶膠-凝膠法添加不同比例Co 之磁電塊材之介電常數對頻率變化圖 ....................... 64
圖4.11 固態反應法添加不同比例Co 之磁電塊材之介電常數對頻率變化圖 ........................ 64
圖4.12 溶膠-凝膠法添加不同比例Co 之磁電塊材之介電損失對頻率變化圖 ....................... 66
圖4.13 固態反應法添加不同比例Co 之磁電塊材之介電損失對頻率變化圖 ........................ 66
圖4.14 磁電塊材在10 MHz 時介電常數比較圖 ............................................. 69
圖4.15 磁電塊材在40 MHz 時介電常數比較圖 ............................................. 69
圖4.16 磁電塊材在10 MHz 時介電損失比較圖 ............................................. 71
圖4.17 磁電塊材在40 MHz 時介電損失比較圖 ............................................. 71
圖4.18 溶膠-凝膠法添加不同比例Co 之磁電塊材之低損耗對頻率變化圖 ......................... 74
圖4.19 固態反應法添加不同比例Co 之磁電塊材之低損耗對頻率變化圖 .......................... 74
圖4.20 溶膠-凝膠法製備之磁電塊材在高頻下,介電常數差的變化圖............................. 76
圖4.21 固態反應法製備之磁電塊材在高頻下,介電常數差的變化圖.............................. 76
表目錄
表 2-1 磁性分類表 .................................................................. 21
表2-2 BiFeO3 摻雜之第三元素及其修飾性質 .............................................. 24
表3-1 溶膠-凝膠法BSFCO 塊材添加Co mol%比例與燒結溫度關係 ...............................44
表3-2 固態反應法BSFCO 塊材添加Co mol%比例與燒結溫度關係 ............................... 44
表4-1 溶膠-凝膠法與固態反應法磁電塊材之平均粒徑大小 .................................... 60
1.R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, London, Chap1-3 (1997).

2.J. F. Scott, and C. A. Araujo, “Ferroelectric Memory”, Scince, 246, 1400 (1989).

3.H. S. Nalwa, “Ferroelectric and dielectric thin films”, Academic press, New York (2002).

4.H. Uchida, R. Ueno, H. Nakaki, H. Funakubo and S. Koda, “Ion Modification for Improvement of Insulating and Ferroelectric Properties of BiFeO3 Thin Films Fabricated by Chemical Solution Deposition”, Appl. Phys., 44(18), l561 (2005).


5.K. U. H. Tabata and T. Kawai, “Coexistence of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin film at room temperature”, Appl. Phys. Lett., 75, 555 (1999).

6.X. Qi, J. Dho, R. Tomov, M. G. Blamire, J. L. MacManus-Driscoll, “Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3”, Appl. Phys. Lett., 86, 062903 (2005).

7.B. Jaffe, W. R. Cook, Jr. and H. Jaffe, “Piezoelectric ceramics”, Academic Press, India (1971).

8.S. Saha and S. B. Krupanidhi, “Dielectric response in pulsed laser ablated (Ba, Sr)TiO3 thin films” J. Appl. Phys., 87(2), 849 (2000).

9.A. J. Moulson, J. M. Herbert, “Electroceramic:Material properties and applications”, Chapman and Hall, London (1990).

10.林振華,“電子材料”,全華科技圖書股份有限公司,2001,12 月。

11.C. Kittel, “Introduction to solid state physics”, 7th ed., John Wiley & Sons, New York (1996).

12.A. J. Moulson and J. M. Herbert, “Electroceramics”, J. Wiley, England, (2003).

13.陳皇鈞譯,“材料科學與工程”,曉園出版社,1989,1 月。

14.N. H. Chan et al., “Nonstoichiomertry in Acceptor-Doped BaTiO3” , J. Am. Cer. Soc., 65 (3), 167 (1982).

15.鄭振東編譯,“實用磁性材料”,全華科技圖書公司,1999,第2-11頁。

16.江明彥,“NiO/NiFe2O4奈米複合材料之合成與磁性研究”,碩士論文,南台科技大學機械工程學系,2007。

17.山口喬、柳田博明、岡本祥一、近桂一郎,“磁性陶瓷”,復漢出版社,1986,第42頁。

18.C. Kittel, Wiley New York, “Introduction to solid state physics”, (1996).

19.J. K. Kim, S. S. Kim, W. J. Kim, A. S. Bhalla and R. Guo, “Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition”, Appl. Phys. Lett., 88, 132901 (2006).

20.S. K. Singh, K. Sato, K. Maruyama and H. Ishiwara, “ Cr-doping effects to electrical properties of BiFeO3 thin films formed by chemical solution deposition”, Jpn. J. Appl. Phys., 45, 1087 (2006).

21.C. F. Chung, J. P. Lin and J. M. Wu, “Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films” Appl. Phys. Lett., 88, 242909 (2006).

22.S. K. Singha, H. Ishiwara and K. Maruyama, “Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition”, Appl. Phys. Lett., 88, 262908 (2006).

23.H. Naganuma, J. Miura and S. Okamura, “Ferroelectric, electrical and magnetic properties of Cr, Mn, Co, Ni, Cu added polycrystalline BiFeO3 films”, Appl. Phys. Lett., 93, 052901 (2008).

24.Y. Wang and C.-W. Nan, “Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films”, Appl. Phys. Lett., 89, 052903 (2006).

25.H. Uchida, R.Ueno, H. Nakai, H. Funakubo and S. Koda, “Ion modification for improvement of insulating and ferroelectric properties of BiFeO3 thin films fabricated by chemical solution deposition”, Jpn. J. Appl. Phys., 44, L561 (2005).

26.Y. H. Lee, J.M. Wu and C.H. Lai, “Influence of La doping in multiferroic properties of BiFeO3 thin films”, Appl. Phys. Lett., 88, 042903 (2006).

27.B. Ruette, MS thesis, Virginia Tech., (2003).

28.A. Maıˆtre, M. Franc¸ois and J.C. Gachon “Experimental Study of the Bi2O3-Fe2O3 Pseudo-Binary System”, JPEDAV, (2004).

29.N. N. Krainik, Sov. Phys., 8, 654 (1966).

30.V. R. Palkar, K. G. Kumara and S. K. Malik, “Observation of room-temperature magnetoelectric coupling in pulsed – laser – deposited Bi0.6Tb0.3La0.1FeO3 thin films”, J. Phys., 58, 1003 (2002).



31.Y. P. Wang, L. Zhou , M. F. Zhang, X. Y. Chen, J. M. Liu and Z.G. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett., 84, 1731 (2004).

32.B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin and D. Viehland. “Magnetic-field induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogenous spin order”, Physical Review B, 69,064114 (2004).

33.Gippius, D. F. Khozeev, E. N. Morozova and V. Zalessky, Phys . Stat. Sol., 196, 221 (2003).

34.I. Sosnowska, M. Loewenhaupt, W. I. F. Davie and R. M. Ibberson, Physica B, 180, 117 (1992).

35.呂宗昕,“圖解奈米技術與光觸媒”,商周出版,2003 年10 月。

36.Y. Li, T. Sritharan, S. Zhang, X. He, Y. Liu and T. Chen, “Multiferroic properties of sputtered BiFeO3 thin films”, Appl. Phys. Lett., 92, 132908 (2008).

37.Kenneth Barbalace, “Periodic Table of Elements - Cobalt - Co.” Environmental Chemistry.com., (1995 - 2010).

38.Kenneth Barbalace, “Periodic Table of Elements - Iron - Fe.” Environmental Chemistry.com., (1995 – 2010).

39.X. Yua, X. An, “Enhanced magnetic and optical properties of pure and (Mn, Sr) doped BiFeO3 nanocrystals”, Solid State Communications 149, 711 (2009).

40.Y. K. Jun, S. H. Hong, “Dielectric and magnetic properties in Co- and Nb-substitutedBiFeO3 ceramics”, Solid State Communications 144, 329 (2007).

41.V. R. Palkaraand K. Prashanthi, “Observation of magnetoelectric coupling in Bi0.7Dy0.3FeO3 thin films at room temperature”, Appl. Phys. Lett., 93, 132906 (2008).

42.張文智,“利用射頻磁控濺鍍系統製備BiFeO3複鐵式薄膜及相關物性研究”,國立成功大學,2008。

43.鐘金峰,“化學液相法製備BiFeO3 氧化物薄膜,國立清華大學”,2006。

44.劉增勳,“以化學共沈法製備純及摻雜鑭鉻鐵酸鉍陶瓷之性質”,國立清華大學,2006。

45.邱冠逢,“Ba0.6Sr0.4TiO3-Ni0.9Co0.03Mn0.07Fe2O4磁電複材性質之研究”,私立東海大學,2009。

46.吳巧玲,“以溶膠-凝膠法製備摻雜鉈之鈦酸鍶鋇介電陶瓷塊材及薄膜及其性質之研究”,私立東海大學,2008。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊