跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.57) 您好!臺灣時間:2025/10/02 02:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳文豪
研究生(外文):Wen-Hao Chen
論文名稱:由具矽烷基寡聚物之光物理性質研究相對應高分子之摺疊
論文名稱(外文):Folding of Alternating Dialkylsilylene-Spaced Donor-Acceptor Copolymers: The Oligomer Approach
指導教授:陸天堯陸天堯引用關係
指導教授(外文):Tien-Yau Luh
口試委員:梁文傑楊吉水
口試日期:2012-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:169
中文關鍵詞:寡聚物光致電子轉移高分子摺疊矽烷基間隔高分子Thorpe-Ingold 效應
外文關鍵詞:oligomerphotoinduced electron transferpolymer foldingsilylene-spaced copolymerThorpe-Ingold Effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  設計並合成以甲基及異丙基之矽烷基為間隔且具有電子給體及受體的寡聚物,藉由研究其光物理性質探討相對應高分子之摺疊性。首先設計不對稱之電子給體(反-1,2-二苯乙烯)及受體(4-胺基苯乙烯)小分子,並逐步利用具空間選擇性之銠金屬催化矽氫化反應及中間體之矽氫基團的建立,進而反應得到對應之寡聚物(單體、二聚物、三聚物及四聚物)。
  實驗結果顯示,在甲基矽烷基為間隔之寡聚物的螢光光譜中具有來自電子給體與受體間電荷分離激發態的放光以及受體自身的螢光,其表現與甲基矽烷基高分子相似。進一步分析兩種放光的相對強度,隨著寡聚物的分子結構延長,來自於電荷分離激發態之放光強度顯著增加;再與兩種不同聚合度之高分子比較,隨著分子量的增加,放光強度與聚合度作圖逐漸顯示出一收斂的趨勢。
  此外,改變矽烷基上取代基團成較大的異丙基,單體及二聚物之光物理性質與甲基矽烷基之寡聚物和高分子並無顯著差異。然而,三聚物及四聚物的吸收光譜中出現了不同於電子給體及受體自身吸收之特徵峰。此特徵峰應來自於電荷轉移錯體的吸收。四聚物於螢光光譜中更顯示了與異丙基矽烷基高分子之電荷轉移錯體相似的放光。此電荷轉移錯體的形成可歸因於矽上較大的異丙基團取代及分子量的增加,促使矽原子周圍的構型產生變化,進而改變給體與受體間的電子作用力。
  上述實驗說明此類分子之摺疊性會影響矽烷基兩側電子給體及受體的電子耦合,進而影響光物理性質之表現。而分子之摺疊性可藉由矽上取代基團的改變及分子鏈長的延伸加以控制。

A series of oligomers with donor and acceptor moieties divided by different dialkylsilylene spacers (Me2Si- vs iPr2Si-) have been designed and synthesized to inspect the folding behavior of the corresponding copolymers by investigating their photophysical properties. 4-Aminostyrene moiety was chosen as the donor and stilbene moiety was selected as the acceptor. Sequential Rh-catalyzed hydrosilylation of terminal alkyne with silylhydride afforded these oligomers. Terminal alkynes were prepared by Sonogashira reaction. Silylhydrides were introduced by lithiation of corresponding aryl bromides with nBuLi followed by silylation with dialkylchlorosilanes. Unsymmetrical stilbenes and bisalkyne were delicately designed and synthesized for constructing these oligomers.
Both local excited (LE) emission of the acceptor chromophore and emission from the charge-separated state (CT emission) have been observed in Me2Si-spaced oligomers, just like that of Me2Si-spaced copolymer. As degree of oligomerization increased, the relative intensity of the CT emission compared to LE emission of Me2Si-spaced oligomers displayed prominent enhancement. When compared with Me2Si-spaced copolymers with different degrees of polymerization (DP = 14 and DP = 30), this tendency reached a plateau rather than increased proportionally.
On the other hand, albeit the bulky isopropyl group introduced on the silicon atom, iPr2Si-spaced monomer and dimer showed similar photophysical behaviors to those of Me2Si-spaced oligomers and copolymers. However, iPr2Si-spaced trimer and tetramer exhibited charge-transfer absorption, which is different from the intrinsic absorption of the donor and acceptor chromophores. Furthermore, tetramer showed essentially same emission from charge-transfer complex as that of iPr2Si-spaced copolymers. The charge-transfer complex emission is attributed to the strong electronic interaction between the donor and acceptor. The change of local conformation triggered by substitution of bulky isopropyl group on silicon atom and the extension of molecular structure resulted in this variation.
These results suggest that the electronic interactions between adjacent donor and acceptor should be affected by the folding nature, which could be tuned by not only the steric effect of the substituents on the silicon atoms but also the extending molecular structures. In addition, the differences in the small energetic barriers for each of the conformational states may be amplified by extending the distance of the folding structure, thus resulting in a more stable conformation.


Acknowledgement i
Abstract (Chinese) ii
Abstract iii
Contents v
List of Tables vii
List of Figures viii
Abbreviations xi
Chapter 1 Introduction 1
Chapter 2 Results and Discussions 18
2.1 Synthesis 18
2.1.1 Monomer 18
2.1.2 Dimer and unsymmetrical stilbene 19
2.1.3 Trimer and unsymmetrical bisalkyne 22
2.1.4 Tetramer 28
2.2 Crystal structure of monomers 29
2.3 Photophysical properties of Me2Si-sapced oligomers 31
2.4 Photophysical properties of iPr2Si-spaced oligomers 38
Chapter 3 Conclusions 49
Chapter 4 Experimental Section 50
4.1 Instrumentation 50
4.2 Synthesis 52
Chapter 5 References 81
Appendix I 86
Appendix II 103


(1)Kekulé, A.; Ladenburg, A. Über die Konstitution und die Metamorphosen der Chemischen Verbindungen und über die Chemische Natur des Kohlenstoffs; Kessinger Publishing, 1904.
(2)Flory, P. Principles of polymer chemistry; Cornell University Press: Ithaca NY, 1953.
(3)Anfinsen, C. B. Science 1973, 181, 223-230.
(4)Seebach, D.; Overhand, M.; Kuhnle, F. N. M.; Martinoni, B.; Oberer, L.; Hommel, U.; Widmer, H. Helv. Chim. Acta 1996, 79, 913-941.
(5)Kudirka, R.; Tran, H.; Sanii, B.; Nam, K. T.; Choi, P. H.; Venkateswaran, N.; Chen, R.; Whitelam, S.; Zuckermann, R. N. Biopolymers 2011, 96, 586-595.
(6)Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893-4011.
(7)Huc, I. Eur. J. Org. Chem. 2004, 17-29.
(8)Hecht, S. H., I. Foldamers; Wiley-VCH, Weinheim, 2007.
(9)Borg, J.; Jensen, M. H.; Sneppen, K.; Tiana, G. Phys. Rev. Lett. 2001, 86, 1031-1033.
(10)Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793-1796.
(11)Prince, R. B.; Saven, J. G.; Wolynes, P. G.; Moore, J. S. J. Am. Chem. Soc. 1999, 121, 3114-3121.
(12)Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S. Angew. Chem. Int. Ed. 2000, 39, 228-230.
(13)Vala, M. T.; Haebig, J.; Rice, S. A. J. Chem. Phys. 1965, 43, 886-895.
(14)Zamora, M. A.; Santagata, L. N.; Masman, M. F.; Bombasaro, J. A.; Freile, M. L.; Enriz, R. D. Can. J. Chem. 2005, 83, 122-137.
(15)West, R.; David, L. D.; Djurovich, P. I.; Stearley, K. L.; Srinivasan, K. S. V.; Yu, H. J. Am. Chem. Soc. 1981, 103, 7352-7354.
(16)West, R. J. Organomet. Chem. 1986, 300, 327-346.
(17)Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359-1410.
(18)Birot, M.; Pillot, J. P.; Dunogues, J. Chem. Rev. 1995, 95, 1443-1477.
(19)Manners, I. Polyhedron 1996, 15, 4311-4329.
(20)Ohshita, J.; Kunai, A. Acta Polym. 1998, 49, 379-403.
(21)Fang, M.-C.; Watanabe, A.; Matsuda, M. Macromolecules 1996, 29, 6807-6813.
(22)Chen, R.-M.; Chien, K.-M.; Wong, K.-T.; Jin, B.-Y.; Luh, T.-Y.; Hsu, J.-H.; Fann, W.-S. J. Am. Chem. Soc. 1997, 119, 11321-11322.
(23)Luh, T.-Y.; Chen, R.-M.; Hwu, T.-Y.; Basu, S.; Shiau, C.-W.; Lin, W.-Y.; Jin, B.-Y.; Hsu, C.-C. Pure Appl. Chem. 2001, 73, 243-246.
(24)Hwu, T.-Y.; Basu, S.; Chen, R.-M.; Cheng, Y.-J.; Hsu, J.-H.; Fann, W.; Luh, T.-Y. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 2218-2231.
(25)Cheng, Y.-J.; Basu, S.; Luo, S.-J.; Luh, T.-Y. Macromolecules 2005, 38, 1442-1446.
(26)van Walree, C. A.; Roest, M. R.; Schuddeboom, W.; Jenneskens, L. W.; Verhoeven, J. W.; Warman, J. M.; Kooijman, H.; Spek, A. L. J. Am. Chem. Soc. 1996, 118, 8395-8407.
(27)Zehnacker, A.; Lahmani, F.; van Walree, C. A.; Jenneskens, L. W. J. Phys. Chem. A 2000, 104, 1377-1387.
(28)Cheng, Y.-J.; Hwu, T.-Y.; Hsu, J.-H.; Luh, T.-Y. Chem. Commun. 2002, 1978-1979.
(29)Cheng, Y.-J.; Luh, T.-Y. Chem. Eur. J. 2004, 10, 5361-5368.
(30)Cheng, Y.-J.; Luh, T.-Y. Macromolecules 2005, 38, 4563-4568.
(31)Wang, H.-W.; Cheng, Y.-J.; Chen, C.-H.; Lim, T.-S.; Fann, W.; Lin, C.-L.; Chang, Y.-P.; Lin, K.-C.; Luh, T.-Y. Macromolecules 2007, 40, 2666-2671.
(32)陳志賢,國立臺灣大學化學所博士論文,2009.
(33)Chen, C.-H.; Huang, Y.-C.; Liao, W.-C.; Lim, T.-S.; Liu, K.-L.; Chen, I.-C.; Luh, T.-Y. Chem. Eur. J. 2012, 18, 334-346.
(34)Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc. 1915, 107, 1080-1106.
(35)Brown, R. F.; van Gulick, N. M. J. Org. Chem. 1956, 21, 1046-1049.
(36)Sammes, P. G.; Weller, D. J. Synthesis 1995, 1205-1222.
(37)Galli, C.; Mandolini, L. Eur. J. Org. Chem. 2000, 3117-3125.
(38)Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735-1766.
(39)Ezhov, Y. S. Russ. J. Phys. Chem. A 2008, 82, 242-244.
(40)Helmer, B. J.; West, R. Organometallics 1982, 1, 1458-1463.
(41)Carlson, C. W.; West, R. Organometallics 1983, 2, 1792-1797.
(42)Kyushin, S.; Kawabata, M.; Sakurai, H.; Matsumoto, H.; Miyake, M.; Sato, M. Organometallics 1994, 13, 795-801.
(43)Yeh, M.-Y.; Lin, H.-C.; Lee, S.-L.; Chen, C.-h.; Lim, T.-S.; Fann, W.; Luh, T.-Y. Chem. Commun. 2007, 3459-3461.
(44)Yeh, M.-Y.; Lin, H.-C.; Lim, T.-S.; Lee, S.-L.; Chen, C.-h.; Fann, W.; Luh, T.-Y. Macromolecules 2007, 40, 9238-9243.
(45)葉美鈺,國立臺灣大學化學所博士論文,2007.
(46)Yeh, M.-Y.; Luh, T.-Y. Chem. Asian J. 2008, 3, 1620-1624.
(47)Luh, T.-Y.; Hu, Z. Dalton Trans. 2010, 39, 9185-9192.
(48)Bothnerby, A. A.; Naarcolin, C.; Gunther, H. J. Am. Chem. Soc. 1962, 84, 2748-2751.
(49)Mulliken, R. S. P., W. B. Molecular Complexes; Wiley, New York, 1969.
(50)廖偉智,國立臺灣大學化學所碩士論文,2011.
(51)Chen, R.-M.; Luh, T.-Y. Tetrahedron 1998, 54, 1197-1206.
(52)Luh, T.-Y. Pure Appl. Chem. 2005, 77, 2083-2090.
(53)Luh, T.-Y.; Cheng, Y.-J. Chem. Commun. 2006, 4669-4678.
(54)Wang, H.-W.; Yeh, M.-Y.; Chen, C.-H.; Lim, T.-S.; Fann, W.; Luh, T.-Y. Macromolecules 2008, 41, 2762-2770.
(55)Luh, T.-Y. Pure Appl. Chem. 2010, 82, 613-624.
(56)Jardetzky, O. Prog. Biophys. Mol. Biol. 1996, 65, 171-219.
(57)Lockman, J. W.; Paul, N. M.; Parquette, J. R. Prog. Polym. Sci. 2005, 30, 423-452.
(58)Müllen, K.; Wegner, G. Electronics Materials: The Oligomer Approach; Wiley-VCH, Weinheim, 1998.
(59)Martin, R. E.; Diederich, F. Angew. Chem. Int. Ed. 1999, 38, 1350-1377.
(60)Parts of the results have been published at Chem. Eur. J. 2012, 18, 347-354.
(61)Burgess, J. Metal Ions in Solutions; Horwood: New York, 1978.
(62)Winter, A.; Friebe, C.; Hager, M. D.; Schubert, U. S. Eur. J. Org. Chem. 2009, 801-809.
(63)Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Macromolecules 1986, 19, 2466-2468.
(64)De, K.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. J. Org. Chem. 2009, 74, 6260-6265.
(65)Hirabaya.T; Itoh, K.; Sakai, S.; Ishii, Y. J. Organomet. Chem. 1970, 25, 33-36.
(66)Lipton, M. F.; Basha, A.; Weinreb, S. M. Org. Synth. 1979, 59, 49-52.
(67)Monnereau, C.; Blart, E.; Odobel, F. Tetrahedron Lett. 2005, 46, 5421-5423.
(68)Wong, M. S.; Nicoud, J. F. Tetrahedron Lett. 1994, 35, 6113-6116.
(69)Due to the bad solubilities of both sereis oligomers in cyclohexane, the molar extinction coefficients were measured only in THF.
(70)Riddick, J. A. B., W. B.; Sakano, T. K. Organic Solvent; Wiley, New York, 1986.
(71)Jian, H. H.; Tour, J. M. J. Org. Chem. 2003, 68, 5091-5103.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top