跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉堃憲
研究生(外文):Kun-Xain Liu
論文名稱:利用支持向量機辨識環境基因物種
論文名稱(外文):Metagenomic Phylogenetic Classification with Support Vector Machine
指導教授:游景盛
口試委員:林英志黃少偉
口試日期:2015-07-22
學位類別:碩士
校院名稱:逢甲大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:50
中文關鍵詞:環境樣本支持向量機基因演化演算法分類
外文關鍵詞:MetagenomicsGenetic AlgorithmsSupport Vector Machinebinning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
由於許多微生物無法在實驗室中人工培養,限制了生物學家了解物種及其聚落之間的互動關係,近年來由於次世代定序技術的成熟與相關技術的快速發展,透過環境樣本取得大量遺傳物質以區別物種與基因間關聯性的metagenomics研究亦受到關注,然而,隨之而來的問題,如快速取得的大量序列同時增加分類(binning)上的困難,因為環境遺傳物質樣本混雜著許多物種的核苷酸片段,要如何分辨出其原來所屬的物種,成為了一項需要克服的新問題。以往的分類方法分為基於組成份特徵分類演算法跟基於同源序列分類演算法兩種,組成份的方法是透過序列的核甘酸成分出現頻率特徵來分類序列,這種方法可快速的分類大量序列但錯誤率會較高,另一種方法是利用資料庫裡同源序列分類樣本序列雖然所需要時間較長,但準確率也較高;本篇研究將利用metagenome序列來計算各種n-nucleotide組成份,並配合基因演化演算法來找出最佳的參數,使用支持向量機和五倍的交叉驗證來得出預測結果,由結果得知我們的方法比以往的使用組成份頻率的方法擁有更高的精準率,所花費的時間也比利用同源序列減少許多,所以我們的方法大幅改善了以往的分類方法。
Metagenomics in environmental samples collected each DNA is unidentified DNA may have more sample in environmental. Metagenomics face a major challenge is to analyze the binning of the original sequence to be the same or similar communities in the category. The new sequencing technology makes it easier for metagenomics, simple and quick to get the sequence, but also more difficult to classify, because of short sequences to produce more than the previous technology. Classification short sequence 100 base pairs (bp) have until now relatively inaccurate, researchers need to use the older, long reading technology. We propose Support Vector Machine algorithm with Genetic Algorithm, a classifier to classify metagenome data, trained complete genomes planning and significantly improved the previous classification method based on synthetic.
目錄
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1實驗動機 1
1.2實驗目的 1
第二章 文獻研究回顧 2
第三章 材料與方法 5
3.1 Data set 5
3.2 Support Vector Machine 7
3.3選取特徵 9
3.3.1 Gapped Di-nucleotide Composition (Dj) 9
3.3.2 Local nucleotide Composition (NxC) 10
3.3.3 Tri-nucleotide (T) 11
3.3.4 Tetra-nucleotide (Te) 12
3.3.5 Penta-nucleotide (Pn) 13
3.4 Genetic Algorithm 14
第四章 研究結果與討論 16
4.1 評估公式 16
4.2 個別特徵的五倍交叉驗證結果 17
4.3 分類樹 27
4.4 整合策略 28
4.5 整體分類預測結果分析 30
第五章 結論 31
參考文獻 32
附錄 35
1.Tringe.S.G.et.al., "Comparative metagenomics of microbial communities," Science. Vol 308 ,2005.p:554-557.
2.Krause.L.et.al., "Phylogenetic classification of short environmental DNA fragments," Nucleic Acids Res, Vol 36 ,2008.p:2230-2239.
3.Tito.R.Y.et.al., "Phylotyping and functional analysis of two ancient human microbiome," PLoS One,Vol 2 ,2008.
4.Arthur.B., "Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models," Nature Methods, Vol 6 ,2009.p:673-676.
5.Chang.C.C.et.al, "LIBSVM:A Library for Support Vector Machine," Acm Transactions on Intelligent Systems and Technology, Vol 2 ,2011.
6.Sharmila.S. M, Tarini.S.G, "Classification of metagenomic sequences: methods and challenges," Briefings in Bioinformatics, Vol 13 ,2012.
7.Mads.A., et.al, "Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes," Nature Biotechnolog, Vol 31 ,2013.p:533-538.
8.Liao.R.Q., et.al., "A New Unsupervised Binning Approach for Metagenomic Sequences Based on N-grams and Automatic Feature Weighting," Ieee-Acm Transactions on Computational Biology and Bioinformatics, Vol ,2014. p: 42-54.
9.Wang.Y, et.al., "MBBC: an efficient approach for metagenomic binning based on clustering," BMC Bioinformatics, Vol 16 ,2015.
10.McHardy.A.C., Martin.H.G., Tsirigos.A., Hugenholtz.P. & Rigoutsos.I, "Accurate phylogenetic classification of variable-length DNA fragments," Nature Methods, Vol 4 ,2007.p:63-72.
11.Daniel.R., "The soil metagenome – a rich resource for the discovery of novel natural products," Science, Vol 15 ,2004.p:199-204.
12.Konstantinos.M, Natalia.I, Kerrie.B, Harris.S, Eugene.G,Alice.C.M, Isidore.R, Asaf.S, Frank.K, Miriam.L, Alla.L,Igor.G, Paul.R, Philip.H & Nikos.C.K, "Use of simulated data sets to evaluate the fidelity of metagenomic processing methods," Nature Methods, Vol. 4 ,2007.p:495-500.
13.Henry C. M, Leung.Y.W.,. Yiu.S. M, Francis Y. L, "next-Generation Sequencing on Metagenomic Data: Assembly and Binning," cyclopedia of Metagenomics, Vol 10 ,2014.p:1-7.
14.Johannes.A , Ino D.B. ,Melanie.S. ,Joshua.Q. ,Umer.Z. ,Leo.L ,Nicholas.J, Anders.F..A & Christopher.Q, "Binning metagenomic contigs by coverage and composition," Nature Methods, Vol 11 ,2014.p:1144-1146.
15.Ruiqi.L., Ruichang.Z., Jihong.G., and Shuigeng.Z, "A New Unsupervised Binning Approach for Metagenomic Sequences Based on N-grams and Automatic Feature Weighting," IEEE/ACM Transaction On Computational Biology and Bioinformatics, Vol 11 ,2014.p:42-54.
16.Siegel.K.A., Kristen.H, Sing.Y., Jessey.L, Chenglong.Y, "PuzzleCluster: A Novel Unsupervised Clustering Algorithm for Binning DNA Fragments in Metagenomics," Current Bioinformatics, Vol 10 ,2014.p:231-252.
17.Blake.W. S, John.R.S, Bradley.S.S., "Draft Genome of a Novel Chlorobi Member Assembled by Tetranucleotide Binning of a Hot Spring Metagenome," Genome Announc, Vol 2 ,2014.p:7-14.
18.Donovan.H.M.I., Connor.T.S. et.al, "CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes," Genome Res., Vol 10 ,2014.
19.Johannes.D, "Taxonomic binning of metagenome samples generated by next-generation sequencing technologies," Brief Bioinform, Vol 13 ,2012.p:646-655.
20.Myers EW, Miller W." Optimal alignments in linear space,"Comput Appl Biosci ,Vol 4 ,1988, p:11–17.
21.Vapnik V,"The nature of statistical learning theory," New York: Springer; 1995.
22.Matthews BW,"Comparison of the predicted and observed secondary structure of T4 phage lysozyme," Biochim Biophys Acta Vol 405, 1975,p:442–451
23.Thomas T, Gilbert J, Meyer F. "Metagenomics—a guidefrom sampling to data analysis," Microb Inf Exp, Vol 1 ,2012.
24.Calvignac-Spencer S, Merkel K, Kutzner N, et.al. "Carrion fly-derived DNA as a tool for comprehensive and costeffective assessment of mammalian biodiversity," Mol Eol Vol 22 ,2013 ,p:915–924.
25.Gonzalez A, Jose C, Shade A., et al." Our microbial selves: what ecology can teach us," EMBO Rep Vol2, 2011,p:775–784.
26.Garcia GD, Gregoracci GB, de O, Santos E, et.al." Metagenomic analysis of healthy and white plague-affected mussismilia braziliensis corals." MicrobEcol Vol 65, 2013, p:1076–1086.
27.Carter MQ, Xue K, Brandl MT, et.al. "Functional metagenomics of Escherichia coli O157:H7 interactions with spinach indigenous microorganisms during biofilm formation," PloSOne Vol 7, 2012.
28.Knight R, Jansson J, Field D, et.al. "Unlocking the potential of metagenomics through replicated experimental design," Nat Biotechnol , Vol 30, 2012, p:513–520.
29.Kennedy J, Flemer B, Jackson SA, et.al. "Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism," Mar Drugs, Vol 8 2010, p:608–628.
30.Calvignac-Spencer S, Merkel K, Kutzner N, et.al. "Carrion fly-derived DNA as a tool for comprehensive and costeffective assessment of mammalian biodiversity," Mol Eol, Vol 23 ,2013 ,p:915–924.
31.Woyke T, Teeling H, Ivanova NN, et .al. "Symbiosis insights through metagenomic analysis of a microbial consortium," Nature ,Vol 443, 2006 ,p:950–955.
32.Sloan DB, Moran N. "Endosymbiotic bacteria as a source of carotenoids in whiteflies," Biol Lett ,Vol 8 ,2012, p:986–989.
33.Vorsino AE, Wieczorek AM, Wright MG, et.al. "Using evolutionary tools to facilitate the prediction and prevention of host-based differentiation in biological control: a review and perspective," Ann Appl Biol, Vol 160 ,2012 p:204–216.
34.Jurado-Rivera JA, Vogler AP, Reid CAM, et.al. "DNA barcoding insect-host plant associations," Proc. Biol Sci R Soc, Vol 216 ,2009 ,p:639–648.
35.Holland JM, Smith BM, Birkett TC, et.al. "Farmland bird invertebrate food provision in arable crops," Ann Appl Biol ,Vol 160 ,2012 ,p:66–75.
36.Diaz,N.N. et.al. "TACOA: taxonomic classification of environmental genomicfragments using a kernelized nearest neighbor approach," BMC Bioinformatics, Vol 10, 2009.
37.D. Huson, et.al., "MEGAN analysis of metagenomic data," Genome Research, vol. 17, 2007, p. 377.
38.Kuan-Lian.L, Tsu-Tsung.W, Gary Xie,Nicholas W H, "Improving Naïve Bayesian Classifier for Metagenomics reads assignment," Biocomp, 2009 ,p. 259-264.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊