跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/27 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江明學
研究生(外文):Ming-Hsueh Chiang
論文名稱:雷射輔助奈米壓印技術之探討及其石英奈米模仁加工技術
論文名稱(外文):Investigation on Laser Assisted Direct Imprinting (LADI) Technology and Nano-Mold-Machining Technique on Quartz
指導教授:蕭飛賓李永春李永春引用關係
指導教授(外文):Fei-Bin HsiaoYung-Chun Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微機電系統工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:82
中文關鍵詞:壓印力量雷射輔助奈米壓印技術石英母模壓印深度雷射能量密度電子束微影
外文關鍵詞:Nano-imprinting lithographyExcimer laserLaser fluenceImprinted pressureImprinted depth.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
近幾年來由於半導體科技蓬勃的發展,傳統光學微影技術也不斷地精進;然而在製作奈米等級線寬又受到物理極限的限制,也造成成本上沉重的負擔。奈米壓印的技術發展至今,其在奈米結構與奈米製程上的重要性,是當今奈米科技中的重要研究課題。當中雷射輔助奈米壓印技術更被譽為下一世代最具潛力的技術之一。在雷射輔助奈米壓印技術當中,本研究使用KrF短波長脈衝式準分子雷射,其雷射波長為248 nm、脈衝時間為30 ns,作為輔助加熱矽晶片達到瞬◎間融化的熱源。並使用高透光率石英當作母膜,在其上定義出奈米等級特定圖案,再與欲壓印矽晶片接觸並施加壓力,而後從高透光率石英正上方施加準分子雷射,造成表層矽晶片材料的瞬間熔融,配合預先加載於材料表面之石英母模,直接在材料表面完成奈米壓印與奈米特徵圖形的轉移。其優點在於可去除半導體製程的光阻塗佈、曝光、顯影、及蝕刻等手續,而直接在矽晶片上製作奈米等級圖案。
本研究在電子束微影方面成功克服電荷累積的問題,在高透光率石英完成200 nm線寬的圖形,同時以舉離法完成200 nm線寬的金屬擋罩,再加以蝕刻做為母膜。並架設雷射加工平台,藉由此準分子雷射工作平台來探討加工參數對於製程上的影響,本文挑選雷射能量密度1.15~1.6 J/cm2而壓印力量為1.0~3.0 kg,藉以探討雷射能量、壓印力量對於壓印深度的相互影響。
Abstract
Due to the rapid development of semiconductor technology, the optical photolithography is advanced constantly. Nevertheless, the feature size smaller than 100 nm has reached its physical limitation and the escalating cost has become a burden for many companies. As an alternative to photolithography, the Nano-imprinting lithography(NIL)is now a promising method for nano-patterning and nano-fabrication. In this study, we focused on silicon materials and utilized a single KrF excimer laser pulse which has a wavelength of 248 nm and a pulse duration of 30 ns as the heating source. The fused quartz mold for laser assisted nano-imprinting has nanometer-scaled features. A single KrF excimer laser passes through the quartz mould and melts a thin surface layer of the silicon substrate within picoseconds. The quartz mold bears some pre-fabricated nano-scald features on its contact side and is made of matericals transparent to the excimer laser. Upon radiating the excimer laser pulse on the sample surface, the near-surface silicon melt. Subsequent cooling and solidification of the molten layer will then complete the transformation of the nano-patterns from the mold to the silicon sample. This rapid technique for patterning nano-scale features in silicon does not require sping coating photo-resist, photolithography , and chemical etching. To fabricate nano-scaled feature quartz molds, this research utilizes condcting polymer ESPACER300 as conducting layer to dissipate charge effect and applied E-beam lithography technology to achieve 200 nm line width. Following by lift-off and inductively coupled plasma (ICP) etching we can get the nano-scale feature mold.
A working platform based on an Excimer Laser Micro-Machining system is constructed for LADI process. The influence of laser fluence and the imprinted pressure on the resulting structures was verifying by varying the laser fluence (1.2~1.6 J/cm2) and the imprinted load (1.0~3.0 kg). The results have shown that the morphology and the imprinted depth were directly related to the laser fluence and the imprinted pressure.
中文摘要....................................................Ⅰ
Abstract.....................................................Ⅱ
Acknowledgements........................................... Ⅳ
Contents................................................... Ⅵ
List of Tables................................................ Ⅷ
List of Figures................................................Ⅸ
Symbols Descriptions........................................ⅩⅣ

Chapter 1 Introduction
1-1 Preface......................................................1
1-2 Research Background..............................................1
1-3 Motivation...................................................3
1-4 Thesis Outline................................................4
Chapter 2 Literature Survey and Technology Development
2-1 Literature Survey..............................................5
2-2-1 Hot Embossing Nano-Imprint Lithography (HE-NIL) .................5
2-2-2 Soft Imprint Lithography (SIL) ..................................8
2-2-3 UV Cured Nanoimprint Lithography (UV-NIL)......................10
2-2-4 Laser Assisted Direct Imprint (LADI)............................ 12
2-2 The Fabrication of Quartz mold Machining Technique................14
2-2-1 The Quartz Crystal and Properties.............................. 14
2-2-2 The Quartz Machining Technique...............................16
Chapter 3 Experimental Technique and Procedure
3-1 Experimental Instruments and Equiments..........................24
3-2 Mold Fabrication.............................................30
3-2-1 Electron Beam Lithograph....................................30
3-2-2 Beforehand Preparation......................................35
3-2-3 Electron Beam Lithography on Quartz............................37
3-3 Laser-Assisted Direct Imprinting (LADI)..........................50
3-3-1 Excimer Laser Micro-Machining System.......................... 50
3-3-2 Designed Working Platform................................... 53
3-3-3 Process for LADI........................................... 56
Chapter 4 Result and Discussion
4-1 Result......................................................58
4-1-1 Surface appearance by Scanning Electron Microscopy (SEM)...........58
4-1-2 Imprinted depth by Atomic Force Microscopy (AFM).................62
4-2 Discussion.................................................. 68
Chapter 5 Conclusion and Future Perspective
5-1 Conclusion..................................................74
5-2 Perspective..................................................77
References....................................................... 78
References
[1]L J. Guo, “Recent progress in nanoimprint technology and its applications”, Journal of Physics D: Applied Physics, vol. 37, 123-141, 2004
[2]B. D. Gaters, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New Approaches to Nanofabricaton: Molding, Printing, and Other Techniques”, Chem. Rev, vol. 105, 1171-1196, 2005
[3]G. E. Moore, “Cramming more components onto integrated circuits”, Electronics, vol. 38, Number 8, 1965.
[4]C. Y. Lin, “Parametric Investigation of Laser-Assisted Direct Imprinting (LADI) Technology for Periodic Structures”, Master Thesis, Institute of Micro-Electro-Mechanical-System Engineering, National Cheng Kung University, Taiwan, R. O. C., 2005.
[5]S. Y. Chou, P. R. Kraus and P. J. Renstrom, “Nanoimprint lithography”, Journal of Vacuum Science and Technology B, vol. 14(6), 4129-4133, 1996.
[6]S. Y. Chou, P. R. Kraus and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Applied Physics Letters, vol. 67(21), 3114-3116, 1995.
[7]P. R. Krauss and S. Y. Chou, “Fabrication of planar quantum magnetic disk structure using electron beam lithography, reactive ion etching, and chemical mechanical polishing”, Journal of Vacuum Science and Technology B, vol. 13(6), 2850-2852, 1995.
[8]S. Y. Chou, P. R. Kraus and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution”, Applied Physics Letters, vol. 272, 85-87, 1996.
[9]L. J. Guo, P. R. Krauss and S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprinting lithography”, Applied Physics Letters, vol. 71, 1881-1883, 1997.
[10]H. Ten, A. Gibertson, and S. Y. Chou, “Roller nanoimprint lithography”, Journal of Vacuum science and Technology B, vol. 16(6), 3926-3928, 1998.
[11]M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography”, Applied Physics Letters, vol. 81(23), 4431-4433, 2002.
[12]W. Zhang and S. Y. Chou, “Fabrication of 60-nm transistors on 4-in wafer using nanoimprint at all lithography levels”, Applied Physics Letters, vol. 83(8), 1632-1634, 2003.
[13]W. Wu, J. Gu, H. X. Ge, C. Keimel and S. Y. Chou, “Room-temperature Si single-electron memory fabricated by nanoimprint lithography”, Applied Physics Letters, vol. 83(11), 2268-2270, 2003.
[14]Stephen Y. Chou and Peter R. Krauss, “Imprint Lithography with Sub-10nm Feature Size and High Throughput”, Microelectronic Engineering, vol. 35, 237-240, 1997.
[15]T. K. Whidden, D. K. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur, and G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE”, Nanotechnology, vol. 7, 447-451, 1996.
[16]D. W. Wang, S. G. Thomas, K. L. Wang, Y. Xia and G. M. Whitesides, “Nanometer scale patterning and pattern transfer on amorphous Si, crystalline Si, and SiO2 surfaces using self-assembled monolayers”, Applied Physics Letters, vol. 70(12), 1593-1595, 1997.
[17]X. M. Zhao, Y. Xia and G. M. Whitesides, “Soft lithographic methods for nano-fabrication”, Journal of Materials Chemistry, vol. 7(7), 1069-1074, 1997.
[18]Y. Xia and G. M. Whitesides, “Soft lithography”, Angewandte Chemie International Edition, vol. 37(5), 550-575, 1998.
[19]M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, “Fabrication of nanostructures using a UV-based imprint technique”, Microelectronic Engineering, vol. 53(1-4), 233-236, 2000.
[20]M. Otto, M. Bender, B. Hadam, B. Spangenberg, and H. Kurz, “Characterization and application of a UV-based imprint technique”, Microelectronic Engineering, vol. 57(58), 361-366, 2001.
[21]M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and flash imprint lithography: a new approach to high-resolution patterning”, Proceedings of the SPIE's 24th International Symposium on Microlithography: Emerging Lithographic Technologies III, Santa Clara, CA, vol. 3676, Part One, 379-389, 1999.
[22]P. Ruchhoeft, M. Colburn, B. Choi, H. Nounu, S. Johnson, T. Bailey, M. Stewart, J. Ekerdt, S.V. Sreenivasan, J.C. Wolfe, C.G. Willson, “Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography”, Journal of Vacuum Science and Technology B, vol. 17(6), 2965-2969, 1999.
[23]M. Colburn, A. Grot, M. Amistoso, B. J. Choi, T. Bailey, J. Ekerdt, S.V. Sreenivasan, J. Hollenhorst, C. G. Willson, “Step and flash imprint lithography for sub-100nm patterning”, 2000 SPIE's 25th International Symposium Microlithography: Emerging Lithographic Technologies III. Feb. 28 - Mar. 3, 2000 Santa Clara, CA.
[24]T. Bailey, B. J. Choi, M. Colburn, A. Grot, M. Meissl, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, C.G. Willson, “Step and flash imprint lithography: template surface treatment and defect analysis, ” Journal of Vacuum Science and Technology B, vol. 18(6), 3572-3577, 2000.
[25]M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J, Ekerdt, and C. G. Willsonet, “Step-and-flash Imprint Lithography: A New Approach to High Resolution Patterning,” Proc. of SPIE, vol. 3676, 379, 1999.
[26]S. Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon”, Nature, vol. 417, 835-837, 2002.
[27]R. Fabian Pease, “Imprint offer Moore”, Nature, vol. 417, 802-803, 2002.
[28]J. S. Danel and G. Delapierre, “Quartz: a material for microdevices”, J. Micromech. Microeng. , vol. 1, 187-198, 1991
[29]P. Rangsten, C. Hedlund, I. V Katardjiev, and Y. Backlund, “Etch rates of crystallographic planes in Z-cut quartz-experiments and simulation”, J. Micromech. Microeng. , vol. 8, 1-6, 1998
[30]T. Sonoda and S. Miyazawa, “Production efficiencies enhance tuning-fork-type low-frequency quartzcrystal units”, J. Electron. Eng., vol. 26, 44-8, 1989
[31]G. Dahm, I. W. Rangelow, P. Hudek, H. W. Koops, “Quartz etching for phase shifting masks”, Microelectronic Engineering , vol. 27, 263-266, 1995
[32]M. Komuro, J. Taniguchi, S. Inoue, N. Kimura, Y. Tokano, H. Hiroshima, and S. Matsui, “Imprint Characteristic by Photo-Induced Solidification of Liquid Polymer”, Japan J. Appl. Physis, vol. 39, 7075-7079, 2000
[33]D. J. Resnick, D. Mancini, M. J. Dauksher, K. Nordquist, T. C. Bailey, S. Johnson, S. V. Sreenivasan, J. G. Ekerdt, and C.G. Willson, “Improved step and flash imprint lithography templates for nanofabrication”, Microelectronic Engineering, vol. 69, 412-419, 2003.
[34]W. Menz, J. Mohr, and O. Paul, Microsystem Technology, WILEY-VCH, Weinheim, 81-192, 2001
[35]http://www.escoproducts.com/html/s1-uv_fused_silica.html
[36]K. L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L. M. Raff, and R. Komanduri, “Micromachining of silicon by short-pulse laser ablation in air and under water”, Materials Science and Engineering A, vol. 372, 145-162, 2004.
[37]J. Brannon, “Excimer laser ablation and etching”, New York, N. J., Education Committee, American Vacuum Society, Chapter 2, 1993.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊