跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂曉鈺
論文名稱:綠豆顆粒結合性澱粉合成?之基因選殖與特性分析
論文名稱(外文):Cloning and characterization of mungbean (Vigna radiata L.) granule-bound starch synthase cDNA
指導教授:柯源悌
指導教授(外文):Yuan-Tih Ko
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:79
中文關鍵詞:綠豆顆粒結合性澱粉合成?基因選殖
外文關鍵詞:mungbeangranule-bound starch synthasecDNA cloning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
在澱粉合成路徑中,澱粉合成?(Starch synthase, SS,alpha-1,4-glucan-glucosyltransferase ; EC 2.4.1.21) 是將 ADP-Glucose 以alpha-1,4 glucosidic bond 的方式轉移 glucose至直鏈 glucan chain的非還原端上延長鏈長度,在SS異構形中,顆粒結合性澱粉合成? (GBSS, granule-bound starch synthase) 與直鏈澱粉 (amylose) 生合成有關,因此本實驗目的為選殖出 GBSS 之 cDNA,未來可更進一步探討 GBSS 酵素的特性與功能。先前利用胰蛋白?水解與MALDI-TOF方法完成綠豆58-kDa GBSS的鑑定,本研究目的是進一步選殖出綠豆GBSS的cDNA,未來探討重組GBSS酵素之特性與功能。根據綠豆GBSS已知內部胺基酸序列及各物種GBSS的保守區間 (conserved region) 設計基因特異性引子 (gene specific primer, GSP),以發育中的「台南五號」(cv. Tainan No. 5) 綠豆種子為材料,抽取其 total RNA 後進行反轉錄-聚合?鏈鎖反應 (reverse transcriptase-polymerase chain reaction, RT-PCR);首先獲得中間 1025 bp片段,接著以豇豆(cowpea, Vigna unguiculata) 之GBSS (accession No. 145202752)核?酸5’ 及 3’序列往內部設計引子再進行RT-PCR,分別獲得含 ATG 起始碼的 5’ 序列 254 bp,及 3’ 包含終止密碼 519 bp 序列,因而成功的獲得全長之綠豆 GBSS cDNA 序列為 1584 bp,命名為 Vrgbss。其包含起始到終止密碼子的完整 open reading frame (ORF),推定出編碼 527 個胺基酸,約 58 kDa 分子大小蛋白質,pI為 5.49。
總 目 錄
頁次

總目錄 I
圖目錄 IV
表目錄 V
中文摘要 VI
英文摘要 VII
第一章 研究目的 1
第二章 文獻回顧 3
第一節、澱粉及其生合成途徑 3
1.1 澱粉的組成與結構 3
1.2 澱粉的生合成與參與酵素 4
第二節、澱粉合成?之研究 7
2.1 可溶性澱粉合成?之研究 7
2.2 顆粒結合性澱粉合成?之分類 10
第三節、顆粒結合性澱粉合成?之研究 10
3.1 顆粒結合性澱粉合成?之酵素性質 10
3.2 顆粒性澱粉合成?於分子層次之研究 13
3.3 綠豆顆粒結合性澱粉58 kDa 的發現 15
第四節、綠豆 15
4.1 簡介 15
4.2 成分分析 16
4.3 物理特性 16
4.4 生理功能 17
4.5 加工性質方面 17
第三章 材料與方法 22
第一節、材料 22
1.1 樣品 22
1.2 藥品 22
1.3 儀器設備 23
第二節、Total RNA 之萃取 25
2.1 Total RNA 之抽取 25
2.2 RNA 甲醛洋菜膠體電泳分析法 27
第三節、引子的設計與合成 29
3.1 設計引子 29
3.2 合成引子 29
第四節、DNA 片段的增幅與純化 30
4.1 反轉錄?作用 (RT) 30
4.2 聚合?鏈鎖反應 (PCR) 31
4.3 快速放大 cDNA 末端序列 (RACE) 32
4.4 DNA 洋菜膠體電泳分析法 34
4.5 DNA 片段之純化方法 34
第五節、cDNA 的基因選殖 35
5.1 E. coli JM109 及勝任細胞之製備 (電轉勝任細胞
之製備) 35
5.2 TA cloning 36
5.3 質體DNA的抽取 40
5.4 DNA之限制? (restriction enzyme)的切割作用 40
5.5 全長DNA 之選殖 41
第六節、DNA 定序與序列特性分析 41
6.1 DNA定序 41
6.2 DNA 序列比對分析 41
第四章 結果與討論 43
第一節 RNA的萃取與品質分析 43
第二節 顆粒結合性澱粉合成?之基因選殖 43
2.1 以��-actin 基因作為基因表現的控制組 44
2.2 選殖Vrgbss cDNA 44
2.3 Vrgbss 全長cDNA序列確認 46
第三節 綠豆GBSS Cdna序列之特性分析 46
3.1 分析 Vrgbss與各物種植物GBSS cDNA及胺基酸
序列比較 46
3.2 分析綠豆與各物種GBSS之演化關係 47
第四節 TA-cloning 47
第五章 結論 48
5.1 論文總結 48
5.2 未來研究方向 48
結果圖與表 51
參考文獻 70
附錄一 79
吳昭慧和連大進 (1996) 綠豆。少量多樣化雜糧作物栽培手冊。臺灣省政府農林廳。
彭書愷 (2007) 綠豆澱粉磷解?cDNA之基因選殖與特性分析。國立台灣海洋大學食品科學系食品科學所碩士學位論文,基隆。
翁廷賜和賴森雄 (1992) 粉綠豆新品種台南五號之育成。行政院農業委員會台南區農業改良場研究彙報第28號,台南。
Abel, G. J. W., Springer, F., Willmitzer, L. and Kossmann, J. 1996. Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.). The Plant Journal 10: 981-991.
Ainsworth, C., Clark, J. and Balsdon, J. 1993. Expression, organization and structure of the genes encoding the waxy protein (granule-bound starch synthase) in wheat. Plant Molecular Biology 22: 67-82.
AVRDC 1975. Chemical analysis of mungbean seeds. Asian Vegetable Research and Development Center. Progress report, Shanhua, Taiwan; AVRDC.
Baba, T., Noro, M., Hiroto, M. and Arai, Y. 1990. Properties of primer-dependent starch synthesis catalysed by starch synthase from potato tubers. Phytochemistry 29:719-723.
Baba, T., Nishihara, M., Mizuno, K., Kawasaki, T., Shimada, H., Kobayashi, E., Ohnishi, S., Tanaka, K. I. and Arai, Y. 1993. Identification, cDNA cloning, and gene expression of soluble starch synthase in rice (Oryza sativa L.) immature seeds. Plant Physiology 103: 565-573.
Ball, S., Guan, H. P., James, M., Myers, A., Keeling, P., Mouille, G., Buleon, A., Colonna, P. and Preiss, J. 1996. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86: 349-352.
Boyer, C. D. and Preiss, J. 1979. Properties of citrate-stimulated starch synthesis catalyzed by starch synthase I of developing maize kernels. Plant Physiology 64: 1039-1042.
Boyer, C. D. 1985. Soluble starch synthases and starch branching enzymes from developing seeds of sorghum sorghum-bicolor cultivar M-5186. Phytochemistry 24: 15-18.
Cao, H., James, M. G. and Myers, A. M. 2000. Purification and characterization of soluble starch synthases from maize endosperm. Archives of Biochemistry and Biophysics 373: 135-146.
Delrue, B., Fontaine, T., Routier, F., Decq, A., Wieruszeski, J. M., Ven-Den Koornhuyse, N., Maddelein, M. L., Fournet, B. and Ball, S. 1992. Waxy Chlamydomoans reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. The Journal of Bacteriology 174: 3612-3620.
Denyer, K. and Smith, A. M. 1992. The purification and characterization of the two forms of soluble starch synthase from developing pea embryos. Planta 186: 609-617.
Denyer, K., Sidebottom, C., Hylton, C. M. and Smith, A. M. 1993. Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. The Plant Journal 4: 191-198.
Denyer, K., Hylton, C. M., Jenner, C. F. and Smith, A. M. 1995a. Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta 196: 256-265.
Denyer, K., Foster, J. and Smith, A. M. 1995b. The contributions of adenosine 5'-diphosphoglucose pyrophosphorylase and starch branching enzyme to the control of starch synthesis in developing pea embryos. Planta 197: 57-62.
Denyer, K., Barber, L. M., Burton, R., Hedley, C. L., Hylton, C. M., Johnson, S., Jones, D. A., Marshall, J., Smith, A. M., Tatge, H., Tomlinson, K. and Wang, T. L. 1995c. The isolation and characterization of novel low-amylose mutants of Pisum sativum L. Plant Cell & Environment 18: 1019-1026.
Dry, I., Smith, A., Edwards, A., Bhattacharyya, M., Dunn, P. and Martin, C. 1992. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. The Plant Journal 2: 193-202.
Echt, C. S. and Schwartz, D. 1981. Evidence for the inclusion of controlling elements within the structural gene at the waxy locusin the maize. Genetics 99: 275-284.
Edwards, A., Marshall, J., Sidebottom, C., Visser, R. G. F., Smith, A. M. and Martin, C. 1995. Biochemical and molecular characterization of a novel starch synthase from potato tubers. The Plant Journal 8: 283-294.
Edwards, A., Marshall, J. Denyer, K., Sidebottom, C., Visser, R. G. F., Martin, C. and Smith, A. M. 1996. Evidence that a 77-kilodalton protein from the starch of pea embryos is an isoform of starch synthase that is both soluble and granule bound. Plant Physiology 112: 89-97.
Emes, M. J., Bowsher, C. G., Hedley, C., Burrell, M. M., Scrase-Field, E.S.F. and Tetlow, I. J. 2003. Starch synthesis and carbon partitioning in developing endosperm. Journal of Experimental Botany 54: 569-575.
Fontaine, T., D'Hulst, C., Maddelein, M. L., Routier, F., Pepin, T. M., Decq, A., Wieruszeski, J. M., Delrue, B., Koornhuyse, N. van-den, Galvez, F. C. F. and Resurreccion, A. V. A. 1993. The effects of decortication and method of extraction on the physical and chemical properties of starch from mungbean (Vigna radiata (L.) Wilczec). Journal of Food Processing and Preservation 17: 93-107.
Goldner, W. and Beevers, H. 1989. Starch synthase and starch branching enzyme from germinating castor bean endosperm. Phytochemistry 28: 1809-1812.
Hawker, J. S., Ozbun, J. L., Ozaki, H., Greenberg, E. and Preiss, J. 1974. Interaction of spinach leaf adenosine diphosphate glucose�n��-1,4-glucan ��-4-glucosyl transferase and ��-1,4-glucan, ��-1,4-glucan-6-glycosyl transferase in synthesis of branched ��-glucan. Archives of Biochemistry and Biophysics 160: 530-51.
Hoover, R., Li, Y. X., Hynes, G. and Senanayake, N. 1997. Physicochemical characterization of mung bean starch. Food Hydrocolloids 11: 401-408.
Hylton, C. M., Denyer, K., Keeling, P. L., Chang, M. T. and Smith, A. M. 1996. The effect of waxy mutations on the granule-bound starch synthases of barley and maize endosperms. Planta 198: 230-237.
Jobling, S. 2004. Improving starch for food and industrial applications. Current Opinion in Plant Biology 7: 210–218.
Ko, Y. T., Chang, S. K., Chen, H. C. and Li, Y. C. 2004. GBSS activities on mungbean (Vigna radiata L.) starch granule and analysis of its total protein profiles. Taiwanese Journal of Agricultural Chemistry and Food Science 42: 132-139.
Ko, Y. T., Pan, C. H., Lee, Y. T. and Chang, J. Y. 2005. Detection of protein related to starch synthase activity in the developing mungbean (Vigna radiata L.). Journal of Agricultural and Food Chemistry 53: 4805-4812.
Ko, Y. T., Dong, Y. L., Hsieh, Y. F. and Kuo, J. C. 2009. Morphology, associated protein analysis, and identification of 58 kDa starch synthase in mungbean (Vigna radiate L. cv. KSP1) starch granule prepation. Journal of Agricultural and Food Chemistry 57: 4426-4432.
Kreis, M., Forde, B. G., Rahman, S., Miflin, B. J. and Shewry P. R. 1985. Molecular evolution of the seed storage proteins of barley, rye and wheat. Journal of Molecular Biology 183: 499-502.
Larsson, C. T., Hofvander, P., Khoshnoodi, J., Ek, B., Rask, L. and Larsson, H. 1996. Three isoforms of starch synthase and two isoforms of branching enzyme are present in potato tuber starch. Plant Science 117: 9-16.
Li, C.Y., Chu, Y. L. and Chang, Y. H. 1987. Isolation and characterization of mungbean starch. In Mungbean, Proceedings of the second International Symposium. Bangkok, Thailand, Asian Vegetable Research and Development Center, pp. 528-535.
Li, M. 2001. Research advance in chemical composition and pharmacological action of mung bean. 上海中醫藥雜誌 5: 47-49.
MacDonald, F. D. and Preiss, J. 1983. Solubilization of the starch-granule-bound starch synthase of normal maize kernels. Plant Physiology 73: 175-178.
MacDona1d, F. D. and Preiss, J. 1985. Partial purification and characterization of granule-bound starch synthase from normal and waxy maize. Plant Physiology 78: 849-852.
Marshall, J., Sidebottom, C., Debet, M., Martin, C., Smith, A. M. and Edwards, A. 1996. Identification of the major starch synthase in the soluble fraction of potato tubers. The Plant Cell 8: 1121-1135.
Martin, C. and Smith, A.M. 1995. Starch biosynthesis. The Plant Cell 7: 971-985.
Mu, C., Harn, C., Ko, Y. T., Singletary, G. W. Keeling, P. L. and Wasserman, B. P. 1994. Association of a 76 kDa polypeptide with soluble starch synthase I activity in maize (cv B73) endosperm. The Plant Journal 6: 151-159.
Nakamura, T., Yamamori, M., Hirano, H. and Hidako, S. 1993. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochemcal Genetic 31: 75-86.
Nelson, O. E. and Rines, H. W. 1962. The enzymatic deficiency in the waxy mutant of maize. Biochemical and Biophysical Research Communications 9: 297-300.
Ozbun, J. L., Hawker, J. S., Greenberg, E., Lammel, C., Preiss, J. and Lee, E. Y. C. 1973. Starch synthase, phosphorylase, ADP-glucose pyrophosphorylase, and UDP glucose pyrophosphorylase in developing maize kernels. Plant Physiology 51: 1-5.
Ozbun, J. L., Hawker, J. S. and Preiss, J. 1972. Soluble adenosine d iphosphate glucose-��-1,4-glucan�n��-1,4-glucosyltransferase from spinach leaves. Biochemical Journal 126: 953-963.
Pisigen, R. A. and del Rosario, E. J. 1976. Isoenzymes of soluble starch synthase from Oryza sativa grains. Phytochemistry 15: 71-73.
Pollock, C. and Preiss, J. 1980. The citrate-stimulated starch synthase of starchy maize kernels: purification and properties. Archives of Biochemistry and Biophysics 204: 578-588.
Ponstein, A. S., Wit, J. F. and Witholt, B. 1991. Potential use of affinity chromatography in the purification of soluble starch synthase activity from potato tubers. Food Hydrocolloids 5: 229-232.
Preiss, J. and Sivak, M. N. 1998. Biochemistry, molecular biology and regulation of starch synthesis. Genetic engineering 20: 177-223.
Salehuzzaman, S. N., Jacobsen, E. and Visser, R. G. F. 1993. Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato. Plant Molecular Biology 23: 947-962.
Schwariz, D. and Echt, C. S. 1982. The effect of Ac dosage on the production of multiple forms of Wx protein by the wx-m9 controlling element mutation in maize. Molecular Genetics and Genomics 187: 410-413.
Shure, M., Wessler, S. and Fedoroff, N. 1983. Molecular identification and isolation of the Waxy locus in maize. Cell 35: 225-233.
Sivak, M. N., Wagner, M. and Preiss, J. 1993. Biochemical evidence for the role of the waxy protein from pea (Pisum sativum L.) as a granule-bound starch synthase. Plant Physiology 103: 1355-1359.
Slattery, C. J., Kavakli, I. H. and Okita, T. W. 2000. Engineering starch for increased quantity and quality. Trends in Plant Science 5: 291-298.
Smith A. M. 1990. Evidence that the waxy protein of pea (Pisum Sativum L.) is not the major starch-granule-bound starch synthase. Planta 182: 599-604.
Smith, A. M., Martin, C. and Denyer, K. 1991. The pathway of starch synthesis in developing pea embryos. Biochemical Society Transactions 19: 547-550.
Smith, A.M. 2001. The biosynthesis of starch granules. Biomacromolecules 2: 335-341.
Taira, T., Uematsu, M., Nakano, Y. and Morikawa, T. 1991. Molecular identification and comparison of the starch synthase bound to starch granules between endosperm and leaf blades in rice plants. Biochemical Genetic 29: 301-311.
Tetlow, I. J., Morell, M. K. and Emes, M. J. 2004. Recent developments in understanding the regulation of starch metabolism in higher plant. Journal of Experimental Botany 55: 2131-2145.
Tomlinson, K., Craig, J. and Smith, A. M. 1998. Major differences in isoform composition of starch synthase between leaves and embryos of pea (Pisum sativum L.). Planta 204: 86-92.
Tsay, J. S., Kuo, W. L. and Kuo, C. G. 1983. Enzyme involved in starch synthesis in the developing mung bean seed. Phytochemistry 22: 1573-1576.
van der Leij, F. R., Visser, R. G. F., Ponstein, A. S., Jacobsen, E. and Feenstra, W. J. 1991. Sequence of the structural gene for granule-bound starch synthase of potato (Solanum tuberosum L.) and evidence for a single point deletion in the amf allele. Molecular Genetics and Genomics 228: 240-248.
Visser, R. G. F. and Jacobson, E. 1993. Towards modifying plants for altered starch content and composition. Trends in Biotechnology 11: 63-68.
Visser, R. G. F., Stolte, A. and Jacobsen, E. 1991. Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Molecular Biology 17: 691-699.
Vos-Scheperkeuter, G. H., de Boer, W., Visser, R. G. F., Feenstra, W. J. and Witholt, B. 1986. Identification of granule-bound starch synthase in potato tubers. Plant Physiology 82: 411-416.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top