跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃信揚
研究生(外文):Huang, Hsin-Yang
論文名稱:磁與聲波敏感之奈米藥物傳輸載體用於雙重顯影與腦部疾病治療
論文名稱(外文):Study on Magnetic and Ultrasonic Sensitive Nanocarrier for Dual imaging and Brain Disease Therapy
指導教授:陳三元陳三元引用關係
指導教授(外文):Chen, San-Yuan
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:127
中文關鍵詞:藥物載體氧化鐵微泡超音波控制釋放
外文關鍵詞:drug carriersiron oxidenanobubbleultrasoundcontrolled release
相關次數:
  • 被引用被引用:0
  • 點閱點閱:328
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
臨床上,能夠診斷治療兼具的奈米藥物載體,不但可以大幅減少療程,也可以增加療效,因此成為奈米藥物領域上熱門研究主題。此外,若診療載體結合超音波與磁場導引,可局部累積在病灶位置同時作控制藥物快速釋放,將會為奈米生醫領域帶來革命性的發展。在此論文中,我們設計並製作出三種智慧型診療載體。首先,我們製作出對溫度敏感的藥物載體,此載體不需要透過交聯劑來穩定,而是透過微乳化的技術,我們將超順磁性奈米氧化鐵與藥物包覆進高分子的載體球中。其中此高分子為普朗尼克(Pluronic F127)與聚乙烯醇(PVA)的混和,透過控制高分子的比例的搭配,我們可以製作出不同程度的溫度敏感載體,進而可以具有不同形式的藥物釋放行為。在診斷能力方面,此溫度敏感載體為優良的磁振造影對比劑。在癲癇大鼠(Long Evans)體內實驗中,溫度敏感載體在接受體外磁場刺激之後,可以快速釋放抗癲癇藥物,達到抑制癲癇的效果。在第二部分,我們將溫度敏感的藥物載體,設計成中空的結構(奈米微泡)使之可以反饋超音波的刺激,同時再包覆全氟化碳氣體(perfluoropentane),可以大幅增加超音波對比訊號,成為一個優良的超音波對比劑。此外,奈米微泡是透過簡單的一步合成來製作,而且超順磁性氧化鐵扮演一個穩定殼層結構的角色,不僅增加超音波背向散射訊號,更讓奈米微泡成為一個優良的磁振造影對比劑,因此,此奈米微泡成為具有雙重顯影的診療利器。我們進一步包覆腦瘤藥物,在動物的異位腫瘤實驗中,利用外加磁場引導奈米微泡到腫瘤位置聚集,接著開啟聚焦超音波釋放奈米微泡內的腦瘤藥物,這樣不僅增加了局部的治療效果,還利用聚焦超音波開啟局度的細胞通透性,達成絕佳的腫瘤治療效率。但是在治療腦部疾病方面,奈米微泡若無法克服血腦阻障層(brain blood barrier),便無法傳輸藥物到病灶位置進行治療,因此在第三部分,我們設計一個較為硬性無機的矽基奈米微泡,此新型的矽基奈米微泡同樣包覆著全氟化物,在殼層中也有超順磁性氧化鐵嵌合在其中。透過控制合成時三種不同矽烷類濃度,我們可以作出不同類型的殼層,進而研究開啟血腦阻障層需要的殼層特性與機制。在此部分中,磁導引扮演一個很重要的角色,他不僅可以導引矽基奈米微泡大量累積到病灶部位,還可以增加病灶部位的超音波與磁振造影的對比度。在開啟聚焦超音波來刺激矽基奈米微泡後,大量的矽基奈米微泡爆炸所產生的微剪切氣流,可使局部的細胞通透性增加,達成開啟血腦阻障層的效果。在此研究顯示,矽基奈米微泡時為跨時代的診療利器,針對腦部疾病治療具有前瞻性,同時可以達到多重顯影的功能。
Magneto-guidable-theranosis nanocarriers can serve as a simple one pot therapy agent through the combination of magnetic guidance (MG) and Focus ultrasound (FUS), and it may be a revolutionary step in the nanomedical platforms recently. In this thesis, three kinds of quickly stimuli-responsive magneto-carriers would be designed and fabricated. In the first part, self-assembling, crosslinker-free, highly thermosensitive nanocarriers (TSNCs) were synthesized by the incorporation of iron oxide nanoparticles and hydrophobic drug molecules into a thermosensitive matrix composed of PEO-PPO-PEO (F127) triblock-copolymer and polyvinyl alcohol (PVA) using a microemulsion process. Depending on the PVA/F127 ratios, the TSNCs can act as a remotely triggered drug delivery platform with a tunable burst drug release profiles through the structure deformation by an external magnetic field. Furthermore, the TSNCs also presented ultrasensitive magnetic resonance imaging (MRI), as demonstrated by a relatively high r2/r1 ratio (430). A preliminary in vivo study using the Long-Evans rat model has demonstrated a significant quickly reduction in the spike-wave discharge after the anti-epilepsy drug, Ethosuximide (ETX), was burst released from the TSNCs. Using a well-controlled burst release, TSNCs may provide significant advantages as highly temperature-responsive nanocarriers for the treatment of acute diseases. In the second part, thermosensitive nanocarrier has been designed to hollow structure in order to multifunctionalize. This bubble-like nanocarrier (nanobubble) encapsulated with perfluoropentane and stabilized with superparamagnetic iron oxide nanoparticles has been synthesized through a single-step emulsion process. Nanobubbles can serve as theranostic platforms for ultrasound (US) and magnetic resonance (MR) imaging, and combined MG and high-intensity focused ultrasound (FUS)-triggered drug release for tumor therapy. Both US and MR imaging contrast can be optimized by varying the shell thickness and SPIO-embedded concentration. The US contrast can be enhanced from a mean grey value of 62 to 115, and the MR r2 value can be enhanced from 164 to 208 (s-1mM-1 Fe) by increasing the SPIO concentration from 14.1 to 28.2 mg/mL, respectively. In vivo investigations of SPIO-embedded nanobubbles in excised tumors under external MG revealed that the US and MR signals change quantitatively compared to the same site without MG. This combined strategy enables the nanobubbles to enhance both passive targeting (increasing the permeability by FUS) and physical MT of chemotherapeutic drugs to tumors. The integration of functionalities makes this system to achieve simultaneous in vivo tumor imaging and efficacious cancer therapy, but the challenge has been difficult and significant to overcome brain blood barrier (BBB) in the brain disease treatment. Finally, we proposed a novel adjustable shell of monodispersed MNBs which comprises of three kinds of silane and superparamagnetic iron oxide (SPIO) to adjust shell porosity (octyltriethoxysilane), hardness (tetraethyl orthosilicate), hydrophility (3-Aminopropyl triethoxysilane), and magnetization to further investigate the mechanism of BBB opening efficiency. Most importantly, MG also acts as a key factor that can not only increase ultrasound (US) contrast but also induce BBB opening in vivo. The novel MNBs can intrinsically serve as diagnostic ultrasound and magnetic resonance imaging contrast agents, and after optimizing shell hardness and embedded SPIO content, can concurrently serve as a catalyst for BBB opening. Therefore, integrating these multifunctional properties makes MNBs a powerful noninvasive platform to achieve BBB opening and brain diagnosing without any cumbersome process of brain slices.
摘要 II
Abstrast IV
致謝 VII
Contents VIII
Figure Captions XI
Chapter 1 Introduction 1
Chapter 2 Literature Review and Theory 6
2.1 Introduction of Multimodal Diagnosis and Therapy 6
2.2 Magneto-Nanoparticles for Theranostic Applications 9
2.2.1 Synthesis of Superparamagnetic Iron Oxide Nanoparticles 10
2.2.2 SPIOs for high performance imaging 13
2.2.3 Surface Modification of SPIOs 15
2.2.4 SPIOs for drug delivery as drug carriers 17
2.2.5 SPIOs for hyperthermia treatment 19
2.3 Ultrasono-nanoparticles for theranostic applications 21
2.3.1 Ultrasound contrast agents 22
2.3.2 UBs for controlled drug/gene release 27
2.3.3 UBs for high intensity focus ultrasound (HIFU) surgery 29
Chapter 3 Experimental Procedures 32
3.1 Experimental overviews 32
3.2 Synthesis of SPIOs 33
3.3 Characterization 33
3.4 High intensity focus ultrasound system 35
3.5 In vivo high frequency magnetic field triggered TSNC-2 drug release 35
3.6 In vivo US-MR tumor imaging and HIFU-triggered nanobubbles drug release 37
3.7 In-vivo nanobubbles Biodistribution with/without magnetic guidance 39
3.8 In vivo MNB-facilitated HIFU-BBB Opening with Magnetic Guidance 39
Chapter 4 Self-assembling PVA-F127 thermosensitive nanocarriers with highly sensitive magnetically-triggered drug release for epilepsy therapy in vivo 41
4.1 Introduction 41
4.2 Synthesis and drug release of Ethosuximide-loaded TSNC-2 45
4.3 Characterization of TSNCs 48
4.4 Drug release behavior of TSNCs 51
4.5 Magnetic characterization and contrast agent relaxivity 54
4.6 Comparison of ETX@TSNC-2 vs. ETX@PVA in the treatment of epilepsy in vivo 57
4.7 Summary 59
Chapter 5 61
SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in-vivo tumor therapy 61
5.1 Introduction 61
5.2 Preparation of BCNU-loaded nanobubbles 64
5.3 Interpolymer Hydrogen-Bonding Complexes 66
5.4 Characterization of the nanobubble synthetic process 69
5.5 Morphology of the nanobubbles 71
5.6 Ultrasonic contrast as a function of polymer ratio and SPIO concentration 74
5.7 MR contrast as a function of SPIO concentration 76
5.8 In vitro evaluation of drug release with exposure to HIFU 78
5.9 In-vivo Biodistribution with and without MT 80
5.10 Therapeutic efficacy 81
5.11 Summary 84
Chapter 6 85
Magnetic-guided monodispersed SPIO-stabilized silica nanobubbles coorperate with focused ultrasound in blood-brain barrier disruption 85
6.1 Introduction 85
6.2 Preparation of MNBs 90
6.3 Characterization of the MNBs in synthetic process 92
6.4 MNB shell morphology changing with the concentration of OTES 94
6.5 Morphological changes of MNBs following pulsed-mode FUS exposure 96
6.6 Comparison of the enhancement of US contrast between MNB without/with MG 99
6.7 MNB-facilitated FUS-induced BBB opening with magnetic guidance in vivo 102
6.8 The safety and evaluation of FUS- induced BBB disruption by the size-dependence MNB 106
6.9 Summary 108
Chapter 7 Conclusion 109
7.1 Self-assembling PVA-F127 thermosensitive nanocarriers with highly sensitive magnetically-triggered drug release for epilepsy therapy in vivo 109
7.2 SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in-vivo tumor therapy 109
7.3 Magnetic-guided monodispersed SPIO-stabilized silica nanobubbles coorperate with focused ultrasound in blood-brain barrier disruption 110
Reference 111
Curriculum Vitae 125
Publications 126
[1] V. Cauda, C. Argyo, A. Schlossbauer, T. Bein, Controlling the delivery kinetics from colloidal mesoporous silica nanoparticles with pH-sensitive gates, Journal of Materials Chemistry, 20 (2010) 4305-4311.
[2] M. Das, S. Mardyani, W.C.W. Chan, E. Kumacheva, Biofunctionalized pH-Responsive Microgels for Cancer Cell Targeting: Rational Design, Advanced Materials, 18 (2006) 80-83.
[3] S.-H. Hu, S.-Y. Chen, D.-M. Liu, C.-S. Hsiao, Core/Single-Crystal-Shell Nanospheres for Controlled Drug Release via a Magnetically Triggered Rupturing Mechanism, Advanced Materials, 20 (2008) 2690-2695.
[4] P.-J. Chen, S.-H. Hu, C.-S. Hsiao, Y.-Y. Chen, D.-M. Liu, S.-Y. Chen, Multifunctional magnetically removable nanogated lids of Fe3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging, Journal of Materials Chemistry, 21 (2011) 2535-2543.
[5] K.C. Wood, N.S. Zacharia, D.J. Schmidt, S.N. Wrightman, B.J. Andaya, P.T. Hammond, Electroactive controlled release thin films, Proceedings of the National Academy of Sciences, 105 (2008) 2280-2285.
[6] B.G. De Geest, A.G. Skirtach, A.A. Mamedov, A.A. Antipov, N.A. Kotov, S.C. De Smedt, G.B. Sukhorukov, Ultrasound-Triggered Release from Multilayered Capsules, Small, 3 (2007) 804-808.
[7] H.J. Kim, H. Matsuda, H. Zhou, I. Honma, Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite, Advanced Materials, 18 (2006) 3083-3088.
[8] C. Liu, J. Guo, W. Yang, J. Hu, C. Wang, S. Fu, Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release, Journal of Materials Chemistry, 19 (2009) 4764-4770.
[9] N.S. Satarkar, J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release, Journal of Controlled Release, 130 (2008) 246-251.
[10] T.K. Jain, J. Richey, M. Strand, D.L. Leslie-Pelecky, C.A. Flask, V. Labhasetwar, Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging, Biomaterials, 29 (2008) 4012-4021.
[11] Y. Sun, Y. Zheng, H. Ran, Y. Zhou, H. Shen, Y. Chen, H. Chen, T.M. Krupka, A. Li, P. Li, Z. Wang, Z. Wang, Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation, Biomaterials, 33 (2012) 5854-5864.
[12] F. Yang, Y. Li, Z. Chen, Y. Zhang, J. Wu, N. Gu, Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging, Biomaterials, 30 (2009) 3882-3890.
[13] U.G. M. Johannsen, L. Eckelt, A. Feussner, N. WaldÖFner, R. Scholz, S. Deger, P. Wust, S. A. Loening and A. Jordan, Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique, International Journal of Hyperthermia, 21 (2005) 637-647.
[14] F.S. Christian Plank, Ulrike Schillinger, Christian Bergemann and Martina Anton, Magnetofection: Enhancing and Targeting Gene Delivery with Superparamagnetic Nanoparticles and Magnetic Fields, Journal of Liposome Research, 13 (2003) 29-32.
[15] A. Nacev, A. Komaee, A. Sarwar, R. Probst, S.H. Kim, M. Emmert-Buck, B. Shapiro, Towards Control of Magnetic Fluids in Patients: Directing Therapeutic Nanoparticles to Disease Locations, Control Systems, IEEE, 32 (2012) 32-74.
[16] B. Shapiro, Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body, Journal of Magnetism and Magnetic Materials, 321 (2009) 1594-1599.
[17] Z. Medarova, W. Pham, Y. Kim, G. Dai, A. Moore, In vivo imaging of tumor response to therapy using a dual-modality imaging strategy, International Journal of Cancer, 118 (2006) 2796-2802.
[18] A.L. Klibanov, T.I. Shevchenko, B.I. Raju, R. Seip, C.T. Chin, Ultrasound-triggered release of materials entrapped in microbubble–liposome constructs: A tool for targeted drug delivery, Journal of Controlled Release, 148 (2010) 13-17.
[19] F. Yan, L. Li, Z. Deng, Q. Jin, J. Chen, W. Yang, C.-K. Yeh, J. Wu, R. Shandas, X. Liu, H. Zheng, Paclitaxel-liposome–microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers, Journal of Controlled Release, 166 (2013) 246-255.
[20] A. Raisinghani, A.N. DeMaria, Physical principles of microbubble ultrasound contrast agents, The American Journal of Cardiology, 90 (2002) 3-7.
[21] J.-M. Correas, L. Bridal, A. Lesavre, A. Méjean, M. Claudon, O. Hélénon, Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts, Eur Radiol, 11 (2001) 1316-1328.
[22] M.A. Borden, H. Zhang, R.J. Gillies, P.A. Dayton, K.W. Ferrara, A stimulus-responsive contrast agent for ultrasound molecular imaging, Biomaterials, 29 (2008) 597-606.
[23] W. Cai, X. Chen, Nanoplatforms for Targeted Molecular Imaging in Living Subjects, Small, 3 (2007) 1840-1854.
[24] M.S. Tartis, D.E. Kruse, H. Zheng, H. Zhang, A. Kheirolomoom, J. Marik, K.W. Ferrara, Dynamic microPET imaging of ultrasound contrast agents and lipid delivery, Journal of Controlled Release, 131 (2008) 160-166.
[25] J.M. Warram, A.G. Sorace, R. Saini, H.R. Umphrey, K.R. Zinn, K. Hoyt, A Triple-Targeted Ultrasound Contrast Agent Provides Improved Localization to Tumor Vasculature, Journal of Ultrasound in Medicine, 30 (2011) 921-931.
[26] A. Xie, T. Belcik, Y. Qi, T.K. Morgan, S.A. Champaneri, S. Taylor, B.P. Davidson, Y. Zhao, A.L. Klibanov, M.A. Kuliszewski, H. Leong-Poi, A. Ammi, J.R. Lindner, Ultrasound-Mediated Vascular Gene Transfection by Cavitation of Endothelial-Targeted Cationic Microbubbles, JACC: Cardiovascular Imaging, 5 (2012) 1253-1262.
[27] U. Boas, P.M.H. Heegaard, Dendrimers in drug research, Chemical Society Reviews, 33 (2004) 43-63.
[28] M.R. Longmire, M. Ogawa, P.L. Choyke, H. Kobayashi, Biologically Optimized Nanosized Molecules and Particles: More than Just Size, Bioconjugate Chemistry, 22 (2011) 993-1000.
[29] D.-E. Lee, H. Koo, I.-C. Sun, J.H. Ryu, K. Kim, I.C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis, Chemical Society Reviews, 41 (2012) 2656-2672.
[30] N.v.B. Jürgen K. Willmann, Ludger M. Dinkelborg &; Sanjiv S. Gambhir, Molecular imaging in drug development, Nature Reviews Drug Discovery 7(2008) 591-607.
[31] A. Louie, Multimodality Imaging Probes: Design and Challenges, Chemical Reviews, 110 (2010) 3146-3195.
[32] J. Xie, K. Chen, J. Huang, S. Lee, J. Wang, J. Gao, X. Li, X. Chen, PET/NIRF/MRI triple functional iron oxide nanoparticles, Biomaterials, 31 (2010) 3016-3022.
[33] L.E. Jennings, N.J. Long, 'Two is better than one'-probes for dual-modality molecular imaging, Chemical Communications, (2009) 3511-3524.
[34] Y.-w. Jun, J.-H. Lee, J. Cheon, Chemical Design of Nanoparticle Probes for High-Performance Magnetic Resonance Imaging, Angewandte Chemie International Edition, 47 (2008) 5122-5135.
[35] F. Grasset, N. Labhsetwar, D. Li, D.C. Park, N. Saito, H. Haneda, O. Cador, T. Roisnel, S. Mornet, E. Duguet, J. Portier, J. Etourneau, Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments:  Powder, Colloidal Solution, and Zinc Ferrite−Silica Core−Shell Nanoparticles, Langmuir, 18 (2002) 8209-8216.
[36] S. Sun, H. Zeng, Size-Controlled Synthesis of Magnetite Nanoparticles, Journal of the American Chemical Society, 124 (2002) 8204-8205.
[37] J. Lee, T. Isobe, M. Senna, Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 109 (1996) 121-127.
[38] A. Bee, R. Massart, S. Neveu, Synthesis of very fine maghemite particles, Journal of Magnetism and Magnetic Materials, 149 (1995) 6-9.
[39] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, 115 (1993) 8706-8715.
[40] X. Peng, J. Wickham, A.P. Alivisatos, Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth:  “Focusing” of Size Distributions, Journal of the American Chemical Society, 120 (1998) 5343-5344.
[41] S. O'Brien, L. Brus, C.B. Murray, Synthesis of Monodisperse Nanoparticles of Barium Titanate:  Toward a Generalized Strategy of Oxide Nanoparticle Synthesis, Journal of the American Chemical Society, 123 (2001) 12085-12086.
[42] S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles, Journal of the American Chemical Society, 126 (2003) 273-279.
[43] D. Farrell, S.A. Majetich, J.P. Wilcoxon, Preparation and Characterization of Monodisperse Fe Nanoparticles, The Journal of Physical Chemistry B, 107 (2003) 11022-11030.
[44] J. Rockenberger, E.C. Scher, A.P. Alivisatos, A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides, Journal of the American Chemical Society, 121 (1999) 11595-11596.
[45] N.R. Jana, Y. Chen, X. Peng, Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach, Chemistry of Materials, 16 (2004) 3931-3935.
[46] A.C.S. Samia, K. Hyzer, J.A. Schlueter, C.-J. Qin, J.S. Jiang, S.D. Bader, X.-M. Lin, Ligand Effect on the Growth and the Digestion of Co Nanocrystals, Journal of the American Chemical Society, 127 (2005) 4126-4127.
[47] Y. Li, M. Afzaal, P. O'Brien, The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility, Journal of Materials Chemistry, 16 (2006) 2175-2180.
[48] S.H. Koenig, K.E. Kellar, Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles, Magnetic Resonance in Medicine, 34 (1995) 227-233.
[49] A. Tanimoto, S. Kuribayashi, Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma, European Journal of Radiology, 58 (2006) 200-216.
[50] A.K. Gupta, S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies, NanoBioscience, IEEE Transactions on, 3 (2004) 66-73.
[51] J.A. Firth, Endothelial barriers: from hypothetical pores to membrane proteins*, Journal of Anatomy, 200 (2002) 541-548.
[52] A. Hirano, T. Matsui, Vascular structures in brain tumors, Human Pathology, 6 (1975) 611-621.
[53] M.K. Yu, Y.Y. Jeong, J. Park, S. Park, J.W. Kim, J.J. Min, K. Kim, S. Jon, Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo, Angewandte Chemie International Edition, 47 (2008) 5362-5365.
[54] N. Kohler, C. Sun, A. Fichtenholtz, J. Gunn, C. Fang, M. Zhang, Methotrexate-Immobilized Poly(ethylene glycol) Magnetic Nanoparticles for MR Imaging and Drug Delivery, Small, 2 (2006) 785-792.
[55] A. Gianella, P.A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W.J.R. Dijk, V.L. Thijssen, A.W. Griffioen, G. Storm, Z.A. Fayad, W.J.M. Mulder, Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in Experimental Cancer, ACS Nano, 5 (2011) 4422-4433.
[56] J.-H. Lee, K. Lee, S.H. Moon, Y. Lee, T.G. Park, J. Cheon, All-in-One Target-Cell-Specific Magnetic Nanoparticles for Simultaneous Molecular Imaging and siRNA Delivery, Angewandte Chemie International Edition, 48 (2009) 4174-4179.
[57] S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Magnetic nanoparticle design for medical applications, Progress in Solid State Chemistry, 34 (2006) 237-247.
[58] R. Hiergeist, W. Andrä, N. Buske, R. Hergt, I. Hilger, U. Richter, W. Kaiser, Application of magnetite ferrofluids for hyperthermia, Journal of Magnetism and Magnetic Materials, 201 (1999) 420-422.
[59] T.M. Krupka, L. Solorio, R.E. Wilson, H. Wu, N. Azar, A.A. Exner, Formulation and Characterization of Echogenic Lipid−Pluronic Nanobubbles, Molecular Pharmaceutics, 7 (2009) 49-59.
[60] R. Bekeredjian, P.A. Grayburn, R.V. Shohet, Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine, Journal of the American College of Cardiology, 45 (2005) 329-335.
[61] K.W. Ferrara, M.A. Borden, H. Zhang, Lipid-Shelled Vehicles: Engineering for Ultrasound Molecular Imaging and Drug Delivery, Accounts of Chemical Research, 42 (2009) 881-892.
[62] Z. Gao, A.M. Kennedy, D.A. Christensen, N.Y. Rapoport, Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy, Ultrasonics, 48 (2008) 260-270.
[63] E.Y. Lukianova-Hleb, E.Y. Hanna, J.H. Hafner, D.O. Lapotko, Tunable plasmonic nanobubbles for cell theranostics, Nanotechnology, 21 (2010) 085102.
[64] G.M. Lanza, S.A. Wickline, Targeted ultrasonic contrast agents for molecular imaging and therapy, Progress in Cardiovascular Diseases, 44 (2001) 13-31.
[65] A.L. Klibanov, Molecular Imaging with Targeted Ultrasound Contrast Microbubbles, in: A.A. Bogdanov, Jr., K. Licha (Eds.) Molecular Imaging, Springer Berlin Heidelberg, 2005, pp. 171-191.
[66] M. McCulloch, C. Gresser, S. Moos, J. Odabashian, S. Jasper, J. Bednarz, P. Burgess, D. Carney, V. Moore, E. Sisk, A. Waggoner, S. Witt, D. Adams, Ultrasound contrast physics: a series on contrast echocardiography, article 3, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography, 13 (2000) 959-967.
[67] H.T. P Walday, T Gjøen, G M Kindberg, T Berg, T Skotland and E Holtz, Biodistributions of air-filled albumin microspheres in rats and pigs, Biochem. J., 299 (1994) 437-443.
[68] A. Klibanov, Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging, Med Biol Eng Comput, 47 (2009) 875-882.
[69] K.D. Buchanan, S. Huang, H. Kim, R.C. MacDonald, D.D. McPherson, Echogenic liposome compositions for increased retention of ultrasound reflectivity at physiologic temperature, Journal of Pharmaceutical Sciences, 97 (2008) 2242-2249.
[70] C.-H. Wang, S.-T. Kang, Y.-H. Lee, Y.-L. Luo, Y.-F. Huang, C.-K. Yeh, Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis, Biomaterials, 33 (2012) 1939-1947.
[71] N. Rapoport, Z. Gao, A. Kennedy, Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy, Journal of the National Cancer Institute, 99 (2007) 1095-1106.
[72] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, Journal of Controlled Release, 65 (2000) 271-284.
[73] J. Liu, A.L. Levine, J.S. Mattoon, M. Yamaguchi, R.J. Lee, X. Pan, T.J. Rosol, Nanoparticles as image enhancing agents for ultrasonography, Physics in Medicine and Biology, 51 (2006) 2179.
[74] I. Nolte, G.H. Vince, M. Maurer, C. Herbold, R. Goldbrunner, L. Solymosi, G. Stoll, M. Bendszus, Iron Particles Enhance Visualization of Experimental Gliomas with High-Resolution Sonography, American Journal of Neuroradiology, 26 (2005) 1469-1474.
[75] R.A. Linker, A. Kroner, T. Horn, R. Gold, M. Mäurer, M. Bendszus, Iron Particle–Enhanced Visualization of Inflammatory Central Nervous System Lesions by High Resolution: Preliminary Data in an Animal Model, American Journal of Neuroradiology, 27 (2006) 1225-1229.
[76] Y. Liu, H. Yang, A. Sakanishi, Ultrasound: Mechanical gene transfer into plant cells by sonoporation, Biotechnology Advances, 24 (2006) 1-16.
[77] Y. Liu, H. Uno, H. Takatsuki, M. Hirano, A. Sakanishi, Interrelation between HeLa-S3 cell transfection and hemolysis in red blood cell suspension using pulsed ultrasound of various duty cycles, Eur Biophys J, 34 (2005) 163-169.
[78] T.R. Porter, P.L. Iversen, S. Li, F. Xie, Interaction of diagnostic ultrasound with synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles, Journal of Ultrasound in Medicine, 15 (1996) 577-584.
[79] R.V. Shohet, S. Chen, Y.-T. Zhou, Z. Wang, R.S. Meidell, R.H. Unger, P.A. Grayburn, Echocardiographic Destruction of Albumin Microbubbles Directs Gene Delivery to the Myocardium, Circulation, 101 (2000) 2554-2556.
[80] Y. WU, E.C. UNGER, T.P. McCREERY, R.H. SWEITZER, D. SHEN, G. WU, M.D. VIELHAUER, Binding and Lysing of Blood Clots Using MRX-408, Investigative Radiology, 33 (1998) 880-885.
[81] K. Tachibana, S. Tachibana, The Use of Ultrasound for Drug Delivery, Echocardiography, 18 (2001) 323-328.
[82] K. Tachibana, Enhancement of Fibrinolysis with Ultrasound Energy, Journal of Vascular and Interventional Radiology, 3 (1992) 299-303.
[83] S.B. Olsson, B. Johansson, A.M. Nilsson, C. Olsson, A. Roijer, Enhancement of thrombolysis by ultrasound, Ultrasound in medicine &; biology, 20 (1994) 375-382.
[84] A. Blinc, C. Francis, J. Trudnowski, E. Carstensen, Characterization of ultrasound-potentiated fibrinolysis in vitro, Blood, 81 (1993) 2636-2643.
[85] K. Mizushige, I. Kondo, K. Ohmori, K. Hirao, H. Matsuo, Enhancement of ultrasound-accelerated thrombolysis by echo contrast agents: dependence on microbubble structure, Ultrasound in medicine &; biology, 25 (1999) 1431-1437.
[86] J.E. Kennedy, G.R. ter Haar, D. Cranston, High intensity focused ultrasound: surgery of the future?, British Journal of Radiology, 76 (2003) 590-599.
[87] W.J. Fry, F.J. Fry, Fundamental Neurological Research and Human Neurosurgery Using Intense Ultrasound, Medical Electronics, IRE Transactions on, ME-7 (1960) 166-181.
[88] H.-L. Liu, M.-Y. Hua, H.-W. Yang, C.-Y. Huang, P.-C. Chu, J.-S. Wu, I.-C. Tseng, J.-J. Wang, T.-C. Yen, P.-Y. Chen, K.-C. Wei, Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain, Proceedings of the National Academy of Sciences, (2010).
[89] K. Hynynen, N. McDannold, N. Vykhodtseva, F.A. Jolesz, Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits1, Radiology, 220 (2001) 640-646.
[90] N.J. McDannold, N.I. Vykhodtseva, K. Hynynen, Microbubble Contrast Agent with Focused Ultrasound to Create Brain Lesions at Low Power Levels: MR Imaging and Histologic Study in Rabbits1, Radiology, 241 (2006) 95-106.
[91] W.M. Pardridge, Drug and Gene Delivery to the Brain: The Vascular Route, Neuron, 36 (2002) 555-558.
[92] N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, K. Hynynen, Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles, Ultrasound in medicine &; biology, 30 (2004) 979-989.
[93] M. Kinoshita, N. McDannold, F.A. Jolesz, K. Hynynen, Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound, Biochemical and Biophysical Research Communications, 340 (2006) 1085-1090.
[94] M. Kinoshita, N. McDannold, F.A. Jolesz, K. Hynynen, Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption, Proceedings of the National Academy of Sciences, 103 (2006) 11719-11723.
[95] K. Hynynen, N. McDannold, N.A. Sheikov, F.A. Jolesz, N. Vykhodtseva, Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications, Neuroimage, 24 (2005) 12-20.
[96] M.A. Cortez, C. McKerlie, O.C. Snead, A model of atypical absence seizures, Neurology, 56 (2001) 341-349.
[97] P.-F. Yang, D.-Y. Chen, J.W. Hu, J.-H. Chen, C.-T. Yen, Functional tracing of medial nociceptive pathways using activity-dependent manganese-enhanced MRI, PAIN, 152 (2011) 194-203.
[98] A.M.L. Coenen, W.H.I.M. Drinkenburg, B.W.M.M. Peeters, J.M.H. Vossen, E.L.J.M. van Luijtelaar, Absence epilepsy and the level of vigilance in rats of the WAG/Rij strain, Neuroscience &; Biobehavioral Reviews, 15 (1991) 259-263.
[99] O. Akman, T. Demiralp, N. Ates, F.Y. Onat, Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy, Epilepsy Research, 89 (2010) 185-193.
[100] Y.-L. Chen, P.-C. Lin, S.-P. Chen, C.-C. Lin, N.-M. Tsai, Y.-L. Cheng, W.-L. Chang, S.-Z. Lin, H.-J. Harn, Activation of Nonsteroidal Anti-Inflammatory Drug-Activated Gene-1 via Extracellular Signal-Regulated Kinase 1/2 Mitogen-Activated Protein Kinase Revealed a Isochaihulactone-Triggered Apoptotic Pathway in Human Lung Cancer A549 Cells, Journal of Pharmacology and Experimental Therapeutics, 323 (2007) 746-756.
[101] R. Liu, D. Li, B. He, X. Xu, M. Sheng, Y. Lai, G. Wang, Z. Gu, Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles, Journal of Controlled Release, 152 (2011) 49-56.
[102] H. Oliveira, E. Pérez-Andrés, J. Thevenot, O. Sandre, E. Berra, S. Lecommandoux, Magnetic field triggered drug release from polymersomes for cancer therapeutics, Journal of Controlled Release, 169 (2013) 165-170.
[103] A. D'Emanuele, J.N. Staniforth, Feedback controlled drug delivery using an electro-diffusion pump, Journal of Controlled Release, 23 (1993) 97-104.
[104] K.D. Buchanan, S.-L. Huang, H. Kim, D.D. McPherson, R.C. MacDonald, Encapsulation of NF-κB decoy oligonucleotides within echogenic liposomes and ultrasound-triggered release, Journal of Controlled Release, 141 (2010) 193-198.
[105] P. Chandaroy, A. Sen, S.W. Hui, Temperature-controlled content release from liposomes encapsulating Pluronic F127, Journal of Controlled Release, 76 (2001) 27-37.
[106] T.-Y. Liu, S.-H. Hu, D.-M. Liu, S.-Y. Chen, I.W. Chen, Biomedical nanoparticle carriers with combined thermal and magnetic responses, Nano Today, 4 (2009) 52-65.
[107] T. Hoare, J. Santamaria, G.F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer, D.S. Kohane, A Magnetically Triggered Composite Membrane for On-Demand Drug Delivery, Nano Letters, 9 (2009) 3651-3657.
[108] C. Sanson, O. Diou, J. Thévenot, E. Ibarboure, A. Soum, A. Brûlet, S. Miraux, E. Thiaudière, S. Tan, A. Brisson, V. Dupuis, O. Sandre, S.b. Lecommandoux, Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for MR Imaging and Magneto-Chemotherapy, ACS Nano, 5 (2011) 1122-1140.
[109] P. Pradhan, J. Giri, F. Rieken, C. Koch, O. Mykhaylyk, M. Döblinger, R. Banerjee, D. Bahadur, C. Plank, Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy, Journal of Controlled Release, 142 (2010) 108-121.
[110] C.R. Thomas, D.P. Ferris, J.-H. Lee, E. Choi, M.H. Cho, E.S. Kim, J.F. Stoddart, J.-S. Shin, J. Cheon, J.I. Zink, Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles, Journal of the American Chemical Society, 132 (2010) 10623-10625.
[111] S.H. Choi, J.-H. Lee, S.-M. Choi, T.G. Park, Thermally Reversible Pluronic/Heparin Nanocapsules Exhibiting 1000-Fold Volume Transition, Langmuir, 22 (2006) 1758-1762.
[112] R. Gref, A. Domb, P. Quellec, T. Blunk, R.H. Müller, J.M. Verbavatz, R. Langer, The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres, Advanced Drug Delivery Reviews, 16 (1995) 215-233.
[113] S. Stolnik, B. Daudali, A. Arien, J. Whetstone, C.R. Heald, M.C. Garnett, S.S. Davis, L. Illum, The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1514 (2001) 261-279.
[114] A. Besheer, J.r. Vogel, D. Glanz, J.r. Kressler, T. Groth, K. Mäder, Characterization of PLGA Nanospheres Stabilized with Amphiphilic Polymers: Hydrophobically Modified Hydroxyethyl Starch vs Pluronics, Molecular Pharmaceutics, 6 (2009) 407-415.
[115] D. Cohn, H. Sagiv, A. Benyamin, G. Lando, Engineering thermoresponsive polymeric nanoshells, Biomaterials, 30 (2009) 3289-3296.
[116] J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.-C. Bacri, F. Gazeau, Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia, Journal of the American Chemical Society, 129 (2007) 2628-2635.
[117] H. John R, Absence seizures: A review of recent reports with new concepts, Epilepsy &; Behavior, 15 (2009) 404-412.
[118] E. Russo, R. Citraro, F. Scicchitano, S. De Fazio, E.D. Di Paola, A. Constanti, G. De Sarro, Comparison of the antiepileptogenic effects of an early long-term treatment with ethosuximide or levetiracetam in a genetic animal model of absence epilepsy, Epilepsia, 51 (2010) 1560-1569.
[119] M.Z. Gören, F. Onat, Ethosuximide: From Bench to Bedside, CNS Drug Reviews, 13 (2007) 224-239.
[120] V. Sanna, G. Pintus, P. Bandiera, R. Anedda, S. Punzoni, B. Sanna, V. Migaleddu, S. Uzzau, M. Sechi, Development of Polymeric Microbubbles Targeted to Prostate-Specific Membrane Antigen as Prototype of Novel Ultrasound Contrast Agents, Molecular Pharmaceutics, 8 (2011) 748-757.
[121] J. Wu, H. Leong-Poi, J. Bin, L. Yang, Y. Liao, Y. Liu, J. Cai, J. Xie, Y. Liu, Efficacy of Contrast-enhanced US and Magnetic Microbubbles Targeted to Vascular Cell Adhesion Molecule–1 for Molecular Imaging of Atherosclerosis, Radiology, 260 (2011) 463-471.
[122] T. Yin, P. Wang, R. Zheng, B. Zheng, D. Cheng, X. Zhang, X. Shuai, Nanobubbles for enhanced ultrasound imaging of tumors, International journal of nanomedicine, 7 (2012) 895-904.
[123] Y. Chen, Y. Gao, H. Chen, D. Zeng, Y. Li, Y. Zheng, F. Li, X. Ji, X. Wang, F. Chen, Q. He, L. Zhang, J. Shi, Engineering Inorganic Nanoemulsions/Nanoliposomes by Fluoride-Silica Chemistry for Efficient Delivery/Co-Delivery of Hydrophobic Agents, Advanced Functional Materials, 22 (2012) 1586-1597.
[124] Y. Chen, Q. Yin, X. Ji, S. Zhang, H. Chen, Y. Zheng, Y. Sun, H. Qu, Z. Wang, Y. Li, X. Wang, K. Zhang, L. Zhang, J. Shi, Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells, Biomaterials, 33 (2012) 7126-7137.
[125] R. Suzuki, Y. Oda, N. Utoguchi, K. Maruyama, Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles, Journal of Controlled Release, 149 (2011) 36-41.
[126] B. Geers, H. Dewitte, S.C. De Smedt, I. Lentacker, Crucial factors and emerging concepts in ultrasound-triggered drug delivery, Journal of Controlled Release, 164 (2012) 248-255.
[127] K.W. Ferrara, Driving delivery vehicles with ultrasound, Advanced Drug Delivery Reviews, 60 (2008) 1097-1102.
[128] P.-L. Lin, R.J. Eckersley, E.A.H. Hall, Ultrabubble: A Laminated Ultrasound Contrast Agent with Narrow Size Range, Advanced Materials, 21 (2009) 3949-3952.
[129] X. Wang, H. Chen, Y. Chen, M. Ma, K. Zhang, F. Li, Y. Zheng, D. Zeng, Q. Wang, J. Shi, Perfluorohexane-Encapsulated Mesoporous Silica Nanocapsules as Enhancement Agents for Highly Efficient High Intensity Focused Ultrasound (HIFU), Advanced Materials, 24 (2012) 785-791.
[130] T.-Y. Liu, T.C. Huang, A novel drug vehicle capable of ultrasound-triggered release with MRI functions, Acta Biomaterialia, 7 (2011) 3927-3934.
[131] Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, J. Gätjens, Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging, Biomaterials, 32 (2011) 6155-6163.
[132] M.G. Ewend, S. Brem, M. Gilbert, R. Goodkin, P.L. Penar, M. Varia, S. Cush, L.A. Carey, Treatment of Single Brain Metastasis with Resection, Intracavity Carmustine Polymer Wafers, and Radiation Therapy Is Safe and Provides Excellent Local Control, Clinical Cancer Research, 13 (2007) 3637-3641.
[133] H.-Y. Huang, S.-H. Hu, C.-S. Chian, S.-Y. Chen, H.-Y. Lai, Y.-Y. Chen, Self-assembling PVA-F127 thermosensitive nanocarriers with highly sensitive magnetically-triggered drug release for epilepsy therapy in vivo, Journal of Materials Chemistry, 22 (2012) 8566-8573.
[134] A. Besheer, J.r. Vogel, D. Glanz, J.r. Kressler, T. Groth, K. Ma?der, Characterization of PLGA Nanospheres Stabilized with Amphiphilic Polymers: Hydrophobically Modified Hydroxyethyl Starch vs Pluronics, Molecular Pharmaceutics, 6 (2009) 407-415.
[135] H.P. Martinez, Y. Kono, S.L. Blair, S. Sandoval, J. Wang-Rodriguez, R.F. Mattrey, A.C. Kummel, W.C. Trogler, Hard shell gas-filled contrast enhancement particles for colour Doppler ultrasound imaging of tumors, MedChemComm, 1 (2010) 266-270.
[136] D.M. El-Sherif, M.A. Wheatley, Development of a novel method for synthesis of a polymeric ultrasound contrast agent, Journal of Biomedical Materials Research Part A, 66A (2003) 347-355.
[137] R. Barreiro-Iglesias, L. Bromberg, M. Temchenko, T.A. Hatton, A. Concheiro, C. Alvarez-Lorenzo, Solubilization and stabilization of camptothecin in micellar solutions of pluronic-g-poly(acrylic acid) copolymers, Journal of Controlled Release, 97 (2004) 537-549.
[138] M.L. Fabiilli, K.J. Haworth, N.H. Fakhri, O.D. Kripfgans, P.L. Carson, J.B. Fowlkes, The role of inertial cavitation in acoustic droplet vaporization, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 56 (2009) 1006-1017.
[139] S.B. Raymond, L.H. Treat, J.D. Dewey, N.J. McDannold, K. Hynynen, B.J. Bacskai, Ultrasound Enhanced Delivery of Molecular Imaging and Therapeutic Agents in Alzheimer's Disease Mouse Models, PLoS ONE, 3 (2008) 2175-2181.
[140] V. Frenkel, K.C.P. Li, Potential role of pulsed-high intensity focused ultrasound in gene therapy, Future Oncology, 2 (2006) 111-119.
[141] J.A. Poff, C.T. Allen, B. Traughber, A. Colunga, J. Xie, Z. Chen, B.J. Wood, C. Van Waes, K.C. Li, V. Frenkel, Pulsed high-intensity focused ultrasound enhances apoptosis and growth inhibition of squamous cell carcinoma xenografts with proteasome inhibitor bortezomib, Radiology, 248 (2008) 485-491.
[142] P. Paparel, J.Y. Chapelon, A. Bissery, S. Chesnais, L. Curiel, A. Gelet, Influence of the docetaxel administration period (neoadjuvant or concomitant) in relation to HIFU treatment on the growth of Dunning tumors: results of a preliminary study, Prostate Cancer Prostatic Dis, 11 (2007) 181-186.
[143] E. Gultepe, F.J. Reynoso, A. Jhaveri, P. Kulkarni, D. Nagesha, C. Ferris, M. Harisinghani, R.B. Campbell, S. Sridhar, Monitoring of magnetic targeting to tumor vasculature through MRI and biodistribution, Nanomedicine, 5 (2010) 1173-1182.
[144] R.D.K. Misra, Core-shell magnetic nanoparticle carrier for targeted drug delivery: challenges and design, Materials Technology: Advanced Performance Materials, 25 (2010) 118-126.
[145] Y. Yang, J.-S. Jiang, B. Du, Z.-F. Gan, M. Qian, P. Zhang, Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting, J Mater Sci: Mater Med, 20 (2009) 301-307.
[146] M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, J. Santamaría, Magnetic nanoparticles for drug delivery, Nano Today, 2 (2007) 22-32.
[147] P.-Y. Chen, H.-L. Liu, M.-Y. Hua, H.-W. Yang, C.-Y. Huang, P.-C. Chu, L.-A. Lyu, I.-C. Tseng, L.-Y. Feng, H.-C. Tsai, S.-M. Chen, Y.-J. Lu, J.-J. Wang, T.-C. Yen, Y.-H. Ma, T. Wu, J.-P. Chen, J.-I. Chuang, J.-W. Shin, C. Hsueh, K.-C. Wei, Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment, Neuro-Oncology, 12 (2010) 1050-1060.
[148] V. Frenkel, Ultrasound mediated delivery of drugs and genes to solid tumors, Advanced Drug Delivery Reviews, 60 (2008) 1193-1208.
[149] J.A. Feshitan, F. Vlachos, S.R. Sirsi, E.E. Konofagou, M.A. Borden, Theranostic Gd(III)-lipid microbubbles for MRI-guided focused ultrasound surgery, Biomaterials, 33 (2012) 247-255.
[150] C.-Y. Ting, C.-H. Fan, H.-L. Liu, C.-Y. Huang, H.-Y. Hsieh, T.-C. Yen, K.-C. Wei, C.-K. Yeh, Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment, Biomaterials, 33 (2012) 704-712.
[151] A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H.-E. Wang, T.-C. Yen, P.-C. Li, Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood–brain barrier opening and concurrent MR and ultrasound imaging, Physics in Medicine and Biology, 57 (2012) 2787.
[152] S. Meairs, A. Alonso, Ultrasound, microbubbles and the blood–brain barrier, Progress in Biophysics and Molecular Biology, 93 (2007) 354-362.
[153] M. Schneider, Characteristics of SonoVue™, Echocardiography, 16 (1999) 743-746.
[154] J.R. Lindner, Microbubbles in medical imaging: current applications and future directions, Nat Rev Drug Discov, 3 (2004) 527-533.
[155] R. Suzuki, T. Takizawa, Y. Negishi, K. Hagisawa, K. Tanaka, K. Sawamura, N. Utoguchi, T. Nishioka, K. Maruyama, Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound, Journal of Controlled Release, 117 (2007) 130-136.
[156] T. Yin, P. Wang, J. Li, R. Zheng, B. Zheng, D. Cheng, R. Li, J. Lai, X. Shuai, Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas, Biomaterials, 34 (2013) 4532-4543.
[157] Z. Xing, J. Wang, H. Ke, B. Zhao, X. Yue, Z. Dai, J. Liu, The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging, Nanotechnology, 21 (2010) 145607.
[158] Y. Wang, X. Li, Y. Zhou, P. Huang, Y. Xu, Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery, International Journal of Pharmaceutics, 384 (2010) 148-153.
[159] C.-H. Wang, Y.-F. Huang, C.-K. Yeh, Aptamer-Conjugated Nanobubbles for Targeted Ultrasound Molecular Imaging, Langmuir, 27 (2011) 6971-6976.
[160] T.L. Zhe Liu, Josef Ehling, Stanley Fokong, Jörg Bornemannc, Fabian Kiessling, Jessica Gätjens, Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging, Biomaterials, 32 (2011) 6155-6163.
[161] X. Wang, H. Chen, Y. Chen, M. Ma, K. Zhang, F. Li, Y. Zheng, D. Zeng, Q. Wang, J. Shi, Perfluorohexane-Encapsulated Mesoporous Silica Nanocapsules as Enhancement Agents for Highly Efficient High Intensity Focused Ultrasound (HIFU), Advanced Materials, 24 785-791.
[162] E.Y. Lukianova-Hleb, X. Ren, J.A. Zasadzinski, X. Wu, D.O. Lapotko, Plasmonic Nanobubbles Enhance Efficacy and Selectivity of Chemotherapy Against Drug-Resistant Cancer Cells, Advanced Materials, 24 (2012) 3831-3837.
[163] R. Asmatulu, M.A. Zalich, R.O. Claus, J.S. Riffle, Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields, Journal of Magnetism and Magnetic Materials, 292 (2005) 108-119.
[164] H.-L. Liu, M.-Y. Hua, H.-W. Yang, C.-Y. Huang, P.-C. Chu, J.-S. Wu, I.C. Tseng, J.-J. Wang, T.-C. Yen, P.-Y. Chen, K.-C. Wei, Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain, Proceedings of the National Academy of Sciences, 107 (2010) 15205-15210.
[165] Y. Lu, J. McLellan, Y. Xia, Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells, Langmuir, 20 (2004) 3464-3470.
[166] H. Chen, A.A. Brayman, W. Kreider, M.R. Bailey, T.J. Matula, Observations of Translation and Jetting of Ultrasound-Activated Microbubbles in Mesenteric Microvessels, Ultrasound in medicine &; biology, 37 (2011) 2139-2148.
[167] H. Chen, W. Kreider, A.A. Brayman, M.R. Bailey, T.J. Matula, Blood Vessel Deformations on Microsecond Time Scales by Ultrasonic Cavitation, Physical Review Letters, 106 (2011) 034301.
[168] J.E. Chomas, P. Dayton, J. Allen, K. Morgan, K.W. Ferrara, Mechanisms of contrast agent destruction, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 48 (2001) 232-248.
[169] S. Mitragotri, Healing sound: the use of ultrasound in drug delivery and other therapeutic applications, Nat Rev Drug Discov, 4 (2005) 255-260.
[170] E.P. Stride, C.C. Coussios, Cavitation and contrast: The use of bubbles in ultrasound imaging and therapy, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224 (2010) 171-191.
[171] E.-A. Brujan, Numerical investigation on the dynamics of cavitation nanobubbles, Microfluid Nanofluid, 11 (2011) 511-517.
[172] E.G. Schutt, D.H. Klein, R.M. Mattrey, J.G. Riess, Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals, Angewandte Chemie International Edition, 42 (2003) 3218-3235.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊