|
[1] V. Cauda, C. Argyo, A. Schlossbauer, T. Bein, Controlling the delivery kinetics from colloidal mesoporous silica nanoparticles with pH-sensitive gates, Journal of Materials Chemistry, 20 (2010) 4305-4311. [2] M. Das, S. Mardyani, W.C.W. Chan, E. Kumacheva, Biofunctionalized pH-Responsive Microgels for Cancer Cell Targeting: Rational Design, Advanced Materials, 18 (2006) 80-83. [3] S.-H. Hu, S.-Y. Chen, D.-M. Liu, C.-S. Hsiao, Core/Single-Crystal-Shell Nanospheres for Controlled Drug Release via a Magnetically Triggered Rupturing Mechanism, Advanced Materials, 20 (2008) 2690-2695. [4] P.-J. Chen, S.-H. Hu, C.-S. Hsiao, Y.-Y. Chen, D.-M. Liu, S.-Y. Chen, Multifunctional magnetically removable nanogated lids of Fe3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging, Journal of Materials Chemistry, 21 (2011) 2535-2543. [5] K.C. Wood, N.S. Zacharia, D.J. Schmidt, S.N. Wrightman, B.J. Andaya, P.T. Hammond, Electroactive controlled release thin films, Proceedings of the National Academy of Sciences, 105 (2008) 2280-2285. [6] B.G. De Geest, A.G. Skirtach, A.A. Mamedov, A.A. Antipov, N.A. Kotov, S.C. De Smedt, G.B. Sukhorukov, Ultrasound-Triggered Release from Multilayered Capsules, Small, 3 (2007) 804-808. [7] H.J. Kim, H. Matsuda, H. Zhou, I. Honma, Ultrasound-Triggered Smart Drug Release from a Poly(dimethylsiloxane)– Mesoporous Silica Composite, Advanced Materials, 18 (2006) 3083-3088. [8] C. Liu, J. Guo, W. Yang, J. Hu, C. Wang, S. Fu, Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release, Journal of Materials Chemistry, 19 (2009) 4764-4770. [9] N.S. Satarkar, J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release, Journal of Controlled Release, 130 (2008) 246-251. [10] T.K. Jain, J. Richey, M. Strand, D.L. Leslie-Pelecky, C.A. Flask, V. Labhasetwar, Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging, Biomaterials, 29 (2008) 4012-4021. [11] Y. Sun, Y. Zheng, H. Ran, Y. Zhou, H. Shen, Y. Chen, H. Chen, T.M. Krupka, A. Li, P. Li, Z. Wang, Z. Wang, Superparamagnetic PLGA-iron oxide microcapsules for dual-modality US/MR imaging and high intensity focused US breast cancer ablation, Biomaterials, 33 (2012) 5854-5864. [12] F. Yang, Y. Li, Z. Chen, Y. Zhang, J. Wu, N. Gu, Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging, Biomaterials, 30 (2009) 3882-3890. [13] U.G. M. Johannsen, L. Eckelt, A. Feussner, N. WaldÖFner, R. Scholz, S. Deger, P. Wust, S. A. Loening and A. Jordan, Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique, International Journal of Hyperthermia, 21 (2005) 637-647. [14] F.S. Christian Plank, Ulrike Schillinger, Christian Bergemann and Martina Anton, Magnetofection: Enhancing and Targeting Gene Delivery with Superparamagnetic Nanoparticles and Magnetic Fields, Journal of Liposome Research, 13 (2003) 29-32. [15] A. Nacev, A. Komaee, A. Sarwar, R. Probst, S.H. Kim, M. Emmert-Buck, B. Shapiro, Towards Control of Magnetic Fluids in Patients: Directing Therapeutic Nanoparticles to Disease Locations, Control Systems, IEEE, 32 (2012) 32-74. [16] B. Shapiro, Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body, Journal of Magnetism and Magnetic Materials, 321 (2009) 1594-1599. [17] Z. Medarova, W. Pham, Y. Kim, G. Dai, A. Moore, In vivo imaging of tumor response to therapy using a dual-modality imaging strategy, International Journal of Cancer, 118 (2006) 2796-2802. [18] A.L. Klibanov, T.I. Shevchenko, B.I. Raju, R. Seip, C.T. Chin, Ultrasound-triggered release of materials entrapped in microbubble–liposome constructs: A tool for targeted drug delivery, Journal of Controlled Release, 148 (2010) 13-17. [19] F. Yan, L. Li, Z. Deng, Q. Jin, J. Chen, W. Yang, C.-K. Yeh, J. Wu, R. Shandas, X. Liu, H. Zheng, Paclitaxel-liposome–microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers, Journal of Controlled Release, 166 (2013) 246-255. [20] A. Raisinghani, A.N. DeMaria, Physical principles of microbubble ultrasound contrast agents, The American Journal of Cardiology, 90 (2002) 3-7. [21] J.-M. Correas, L. Bridal, A. Lesavre, A. Méjean, M. Claudon, O. Hélénon, Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts, Eur Radiol, 11 (2001) 1316-1328. [22] M.A. Borden, H. Zhang, R.J. Gillies, P.A. Dayton, K.W. Ferrara, A stimulus-responsive contrast agent for ultrasound molecular imaging, Biomaterials, 29 (2008) 597-606. [23] W. Cai, X. Chen, Nanoplatforms for Targeted Molecular Imaging in Living Subjects, Small, 3 (2007) 1840-1854. [24] M.S. Tartis, D.E. Kruse, H. Zheng, H. Zhang, A. Kheirolomoom, J. Marik, K.W. Ferrara, Dynamic microPET imaging of ultrasound contrast agents and lipid delivery, Journal of Controlled Release, 131 (2008) 160-166. [25] J.M. Warram, A.G. Sorace, R. Saini, H.R. Umphrey, K.R. Zinn, K. Hoyt, A Triple-Targeted Ultrasound Contrast Agent Provides Improved Localization to Tumor Vasculature, Journal of Ultrasound in Medicine, 30 (2011) 921-931. [26] A. Xie, T. Belcik, Y. Qi, T.K. Morgan, S.A. Champaneri, S. Taylor, B.P. Davidson, Y. Zhao, A.L. Klibanov, M.A. Kuliszewski, H. Leong-Poi, A. Ammi, J.R. Lindner, Ultrasound-Mediated Vascular Gene Transfection by Cavitation of Endothelial-Targeted Cationic Microbubbles, JACC: Cardiovascular Imaging, 5 (2012) 1253-1262. [27] U. Boas, P.M.H. Heegaard, Dendrimers in drug research, Chemical Society Reviews, 33 (2004) 43-63. [28] M.R. Longmire, M. Ogawa, P.L. Choyke, H. Kobayashi, Biologically Optimized Nanosized Molecules and Particles: More than Just Size, Bioconjugate Chemistry, 22 (2011) 993-1000. [29] D.-E. Lee, H. Koo, I.-C. Sun, J.H. Ryu, K. Kim, I.C. Kwon, Multifunctional nanoparticles for multimodal imaging and theragnosis, Chemical Society Reviews, 41 (2012) 2656-2672. [30] N.v.B. Jürgen K. Willmann, Ludger M. Dinkelborg &; Sanjiv S. Gambhir, Molecular imaging in drug development, Nature Reviews Drug Discovery 7(2008) 591-607. [31] A. Louie, Multimodality Imaging Probes: Design and Challenges, Chemical Reviews, 110 (2010) 3146-3195. [32] J. Xie, K. Chen, J. Huang, S. Lee, J. Wang, J. Gao, X. Li, X. Chen, PET/NIRF/MRI triple functional iron oxide nanoparticles, Biomaterials, 31 (2010) 3016-3022. [33] L.E. Jennings, N.J. Long, 'Two is better than one'-probes for dual-modality molecular imaging, Chemical Communications, (2009) 3511-3524. [34] Y.-w. Jun, J.-H. Lee, J. Cheon, Chemical Design of Nanoparticle Probes for High-Performance Magnetic Resonance Imaging, Angewandte Chemie International Edition, 47 (2008) 5122-5135. [35] F. Grasset, N. Labhsetwar, D. Li, D.C. Park, N. Saito, H. Haneda, O. Cador, T. Roisnel, S. Mornet, E. Duguet, J. Portier, J. Etourneau, Synthesis and Magnetic Characterization of Zinc Ferrite Nanoparticles with Different Environments: Powder, Colloidal Solution, and Zinc Ferrite−Silica Core−Shell Nanoparticles, Langmuir, 18 (2002) 8209-8216. [36] S. Sun, H. Zeng, Size-Controlled Synthesis of Magnetite Nanoparticles, Journal of the American Chemical Society, 124 (2002) 8204-8205. [37] J. Lee, T. Isobe, M. Senna, Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 109 (1996) 121-127. [38] A. Bee, R. Massart, S. Neveu, Synthesis of very fine maghemite particles, Journal of Magnetism and Magnetic Materials, 149 (1995) 6-9. [39] C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, 115 (1993) 8706-8715. [40] X. Peng, J. Wickham, A.P. Alivisatos, Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions, Journal of the American Chemical Society, 120 (1998) 5343-5344. [41] S. O'Brien, L. Brus, C.B. Murray, Synthesis of Monodisperse Nanoparticles of Barium Titanate: Toward a Generalized Strategy of Oxide Nanoparticle Synthesis, Journal of the American Chemical Society, 123 (2001) 12085-12086. [42] S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles, Journal of the American Chemical Society, 126 (2003) 273-279. [43] D. Farrell, S.A. Majetich, J.P. Wilcoxon, Preparation and Characterization of Monodisperse Fe Nanoparticles, The Journal of Physical Chemistry B, 107 (2003) 11022-11030. [44] J. Rockenberger, E.C. Scher, A.P. Alivisatos, A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides, Journal of the American Chemical Society, 121 (1999) 11595-11596. [45] N.R. Jana, Y. Chen, X. Peng, Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach, Chemistry of Materials, 16 (2004) 3931-3935. [46] A.C.S. Samia, K. Hyzer, J.A. Schlueter, C.-J. Qin, J.S. Jiang, S.D. Bader, X.-M. Lin, Ligand Effect on the Growth and the Digestion of Co Nanocrystals, Journal of the American Chemical Society, 127 (2005) 4126-4127. [47] Y. Li, M. Afzaal, P. O'Brien, The synthesis of amine-capped magnetic (Fe, Mn, Co, Ni) oxide nanocrystals and their surface modification for aqueous dispersibility, Journal of Materials Chemistry, 16 (2006) 2175-2180. [48] S.H. Koenig, K.E. Kellar, Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles, Magnetic Resonance in Medicine, 34 (1995) 227-233. [49] A. Tanimoto, S. Kuribayashi, Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma, European Journal of Radiology, 58 (2006) 200-216. [50] A.K. Gupta, S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies, NanoBioscience, IEEE Transactions on, 3 (2004) 66-73. [51] J.A. Firth, Endothelial barriers: from hypothetical pores to membrane proteins*, Journal of Anatomy, 200 (2002) 541-548. [52] A. Hirano, T. Matsui, Vascular structures in brain tumors, Human Pathology, 6 (1975) 611-621. [53] M.K. Yu, Y.Y. Jeong, J. Park, S. Park, J.W. Kim, J.J. Min, K. Kim, S. Jon, Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy In Vivo, Angewandte Chemie International Edition, 47 (2008) 5362-5365. [54] N. Kohler, C. Sun, A. Fichtenholtz, J. Gunn, C. Fang, M. Zhang, Methotrexate-Immobilized Poly(ethylene glycol) Magnetic Nanoparticles for MR Imaging and Drug Delivery, Small, 2 (2006) 785-792. [55] A. Gianella, P.A. Jarzyna, V. Mani, S. Ramachandran, C. Calcagno, J. Tang, B. Kann, W.J.R. Dijk, V.L. Thijssen, A.W. Griffioen, G. Storm, Z.A. Fayad, W.J.M. Mulder, Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in Experimental Cancer, ACS Nano, 5 (2011) 4422-4433. [56] J.-H. Lee, K. Lee, S.H. Moon, Y. Lee, T.G. Park, J. Cheon, All-in-One Target-Cell-Specific Magnetic Nanoparticles for Simultaneous Molecular Imaging and siRNA Delivery, Angewandte Chemie International Edition, 48 (2009) 4174-4179. [57] S. Mornet, S. Vasseur, F. Grasset, P. Veverka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Magnetic nanoparticle design for medical applications, Progress in Solid State Chemistry, 34 (2006) 237-247. [58] R. Hiergeist, W. Andrä, N. Buske, R. Hergt, I. Hilger, U. Richter, W. Kaiser, Application of magnetite ferrofluids for hyperthermia, Journal of Magnetism and Magnetic Materials, 201 (1999) 420-422. [59] T.M. Krupka, L. Solorio, R.E. Wilson, H. Wu, N. Azar, A.A. Exner, Formulation and Characterization of Echogenic Lipid−Pluronic Nanobubbles, Molecular Pharmaceutics, 7 (2009) 49-59. [60] R. Bekeredjian, P.A. Grayburn, R.V. Shohet, Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine, Journal of the American College of Cardiology, 45 (2005) 329-335. [61] K.W. Ferrara, M.A. Borden, H. Zhang, Lipid-Shelled Vehicles: Engineering for Ultrasound Molecular Imaging and Drug Delivery, Accounts of Chemical Research, 42 (2009) 881-892. [62] Z. Gao, A.M. Kennedy, D.A. Christensen, N.Y. Rapoport, Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy, Ultrasonics, 48 (2008) 260-270. [63] E.Y. Lukianova-Hleb, E.Y. Hanna, J.H. Hafner, D.O. Lapotko, Tunable plasmonic nanobubbles for cell theranostics, Nanotechnology, 21 (2010) 085102. [64] G.M. Lanza, S.A. Wickline, Targeted ultrasonic contrast agents for molecular imaging and therapy, Progress in Cardiovascular Diseases, 44 (2001) 13-31. [65] A.L. Klibanov, Molecular Imaging with Targeted Ultrasound Contrast Microbubbles, in: A.A. Bogdanov, Jr., K. Licha (Eds.) Molecular Imaging, Springer Berlin Heidelberg, 2005, pp. 171-191. [66] M. McCulloch, C. Gresser, S. Moos, J. Odabashian, S. Jasper, J. Bednarz, P. Burgess, D. Carney, V. Moore, E. Sisk, A. Waggoner, S. Witt, D. Adams, Ultrasound contrast physics: a series on contrast echocardiography, article 3, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography, 13 (2000) 959-967. [67] H.T. P Walday, T Gjøen, G M Kindberg, T Berg, T Skotland and E Holtz, Biodistributions of air-filled albumin microspheres in rats and pigs, Biochem. J., 299 (1994) 437-443. [68] A. Klibanov, Preparation of targeted microbubbles: ultrasound contrast agents for molecular imaging, Med Biol Eng Comput, 47 (2009) 875-882. [69] K.D. Buchanan, S. Huang, H. Kim, R.C. MacDonald, D.D. McPherson, Echogenic liposome compositions for increased retention of ultrasound reflectivity at physiologic temperature, Journal of Pharmaceutical Sciences, 97 (2008) 2242-2249. [70] C.-H. Wang, S.-T. Kang, Y.-H. Lee, Y.-L. Luo, Y.-F. Huang, C.-K. Yeh, Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis, Biomaterials, 33 (2012) 1939-1947. [71] N. Rapoport, Z. Gao, A. Kennedy, Multifunctional Nanoparticles for Combining Ultrasonic Tumor Imaging and Targeted Chemotherapy, Journal of the National Cancer Institute, 99 (2007) 1095-1106. [72] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, Journal of Controlled Release, 65 (2000) 271-284. [73] J. Liu, A.L. Levine, J.S. Mattoon, M. Yamaguchi, R.J. Lee, X. Pan, T.J. Rosol, Nanoparticles as image enhancing agents for ultrasonography, Physics in Medicine and Biology, 51 (2006) 2179. [74] I. Nolte, G.H. Vince, M. Maurer, C. Herbold, R. Goldbrunner, L. Solymosi, G. Stoll, M. Bendszus, Iron Particles Enhance Visualization of Experimental Gliomas with High-Resolution Sonography, American Journal of Neuroradiology, 26 (2005) 1469-1474. [75] R.A. Linker, A. Kroner, T. Horn, R. Gold, M. Mäurer, M. Bendszus, Iron Particle–Enhanced Visualization of Inflammatory Central Nervous System Lesions by High Resolution: Preliminary Data in an Animal Model, American Journal of Neuroradiology, 27 (2006) 1225-1229. [76] Y. Liu, H. Yang, A. Sakanishi, Ultrasound: Mechanical gene transfer into plant cells by sonoporation, Biotechnology Advances, 24 (2006) 1-16. [77] Y. Liu, H. Uno, H. Takatsuki, M. Hirano, A. Sakanishi, Interrelation between HeLa-S3 cell transfection and hemolysis in red blood cell suspension using pulsed ultrasound of various duty cycles, Eur Biophys J, 34 (2005) 163-169. [78] T.R. Porter, P.L. Iversen, S. Li, F. Xie, Interaction of diagnostic ultrasound with synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles, Journal of Ultrasound in Medicine, 15 (1996) 577-584. [79] R.V. Shohet, S. Chen, Y.-T. Zhou, Z. Wang, R.S. Meidell, R.H. Unger, P.A. Grayburn, Echocardiographic Destruction of Albumin Microbubbles Directs Gene Delivery to the Myocardium, Circulation, 101 (2000) 2554-2556. [80] Y. WU, E.C. UNGER, T.P. McCREERY, R.H. SWEITZER, D. SHEN, G. WU, M.D. VIELHAUER, Binding and Lysing of Blood Clots Using MRX-408, Investigative Radiology, 33 (1998) 880-885. [81] K. Tachibana, S. Tachibana, The Use of Ultrasound for Drug Delivery, Echocardiography, 18 (2001) 323-328. [82] K. Tachibana, Enhancement of Fibrinolysis with Ultrasound Energy, Journal of Vascular and Interventional Radiology, 3 (1992) 299-303. [83] S.B. Olsson, B. Johansson, A.M. Nilsson, C. Olsson, A. Roijer, Enhancement of thrombolysis by ultrasound, Ultrasound in medicine &; biology, 20 (1994) 375-382. [84] A. Blinc, C. Francis, J. Trudnowski, E. Carstensen, Characterization of ultrasound-potentiated fibrinolysis in vitro, Blood, 81 (1993) 2636-2643. [85] K. Mizushige, I. Kondo, K. Ohmori, K. Hirao, H. Matsuo, Enhancement of ultrasound-accelerated thrombolysis by echo contrast agents: dependence on microbubble structure, Ultrasound in medicine &; biology, 25 (1999) 1431-1437. [86] J.E. Kennedy, G.R. ter Haar, D. Cranston, High intensity focused ultrasound: surgery of the future?, British Journal of Radiology, 76 (2003) 590-599. [87] W.J. Fry, F.J. Fry, Fundamental Neurological Research and Human Neurosurgery Using Intense Ultrasound, Medical Electronics, IRE Transactions on, ME-7 (1960) 166-181. [88] H.-L. Liu, M.-Y. Hua, H.-W. Yang, C.-Y. Huang, P.-C. Chu, J.-S. Wu, I.-C. Tseng, J.-J. Wang, T.-C. Yen, P.-Y. Chen, K.-C. Wei, Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain, Proceedings of the National Academy of Sciences, (2010). [89] K. Hynynen, N. McDannold, N. Vykhodtseva, F.A. Jolesz, Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits1, Radiology, 220 (2001) 640-646. [90] N.J. McDannold, N.I. Vykhodtseva, K. Hynynen, Microbubble Contrast Agent with Focused Ultrasound to Create Brain Lesions at Low Power Levels: MR Imaging and Histologic Study in Rabbits1, Radiology, 241 (2006) 95-106. [91] W.M. Pardridge, Drug and Gene Delivery to the Brain: The Vascular Route, Neuron, 36 (2002) 555-558. [92] N. Sheikov, N. McDannold, N. Vykhodtseva, F. Jolesz, K. Hynynen, Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles, Ultrasound in medicine &; biology, 30 (2004) 979-989. [93] M. Kinoshita, N. McDannold, F.A. Jolesz, K. Hynynen, Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound, Biochemical and Biophysical Research Communications, 340 (2006) 1085-1090. [94] M. Kinoshita, N. McDannold, F.A. Jolesz, K. Hynynen, Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption, Proceedings of the National Academy of Sciences, 103 (2006) 11719-11723. [95] K. Hynynen, N. McDannold, N.A. Sheikov, F.A. Jolesz, N. Vykhodtseva, Local and reversible blood–brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications, Neuroimage, 24 (2005) 12-20. [96] M.A. Cortez, C. McKerlie, O.C. Snead, A model of atypical absence seizures, Neurology, 56 (2001) 341-349. [97] P.-F. Yang, D.-Y. Chen, J.W. Hu, J.-H. Chen, C.-T. Yen, Functional tracing of medial nociceptive pathways using activity-dependent manganese-enhanced MRI, PAIN, 152 (2011) 194-203. [98] A.M.L. Coenen, W.H.I.M. Drinkenburg, B.W.M.M. Peeters, J.M.H. Vossen, E.L.J.M. van Luijtelaar, Absence epilepsy and the level of vigilance in rats of the WAG/Rij strain, Neuroscience &; Biobehavioral Reviews, 15 (1991) 259-263. [99] O. Akman, T. Demiralp, N. Ates, F.Y. Onat, Electroencephalographic differences between WAG/Rij and GAERS rat models of absence epilepsy, Epilepsy Research, 89 (2010) 185-193. [100] Y.-L. Chen, P.-C. Lin, S.-P. Chen, C.-C. Lin, N.-M. Tsai, Y.-L. Cheng, W.-L. Chang, S.-Z. Lin, H.-J. Harn, Activation of Nonsteroidal Anti-Inflammatory Drug-Activated Gene-1 via Extracellular Signal-Regulated Kinase 1/2 Mitogen-Activated Protein Kinase Revealed a Isochaihulactone-Triggered Apoptotic Pathway in Human Lung Cancer A549 Cells, Journal of Pharmacology and Experimental Therapeutics, 323 (2007) 746-756. [101] R. Liu, D. Li, B. He, X. Xu, M. Sheng, Y. Lai, G. Wang, Z. Gu, Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles, Journal of Controlled Release, 152 (2011) 49-56. [102] H. Oliveira, E. Pérez-Andrés, J. Thevenot, O. Sandre, E. Berra, S. Lecommandoux, Magnetic field triggered drug release from polymersomes for cancer therapeutics, Journal of Controlled Release, 169 (2013) 165-170. [103] A. D'Emanuele, J.N. Staniforth, Feedback controlled drug delivery using an electro-diffusion pump, Journal of Controlled Release, 23 (1993) 97-104. [104] K.D. Buchanan, S.-L. Huang, H. Kim, D.D. McPherson, R.C. MacDonald, Encapsulation of NF-κB decoy oligonucleotides within echogenic liposomes and ultrasound-triggered release, Journal of Controlled Release, 141 (2010) 193-198. [105] P. Chandaroy, A. Sen, S.W. Hui, Temperature-controlled content release from liposomes encapsulating Pluronic F127, Journal of Controlled Release, 76 (2001) 27-37. [106] T.-Y. Liu, S.-H. Hu, D.-M. Liu, S.-Y. Chen, I.W. Chen, Biomedical nanoparticle carriers with combined thermal and magnetic responses, Nano Today, 4 (2009) 52-65. [107] T. Hoare, J. Santamaria, G.F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer, D.S. Kohane, A Magnetically Triggered Composite Membrane for On-Demand Drug Delivery, Nano Letters, 9 (2009) 3651-3657. [108] C. Sanson, O. Diou, J. Thévenot, E. Ibarboure, A. Soum, A. Brûlet, S. Miraux, E. Thiaudière, S. Tan, A. Brisson, V. Dupuis, O. Sandre, S.b. Lecommandoux, Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for MR Imaging and Magneto-Chemotherapy, ACS Nano, 5 (2011) 1122-1140. [109] P. Pradhan, J. Giri, F. Rieken, C. Koch, O. Mykhaylyk, M. Döblinger, R. Banerjee, D. Bahadur, C. Plank, Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy, Journal of Controlled Release, 142 (2010) 108-121. [110] C.R. Thomas, D.P. Ferris, J.-H. Lee, E. Choi, M.H. Cho, E.S. Kim, J.F. Stoddart, J.-S. Shin, J. Cheon, J.I. Zink, Noninvasive Remote-Controlled Release of Drug Molecules in Vitro Using Magnetic Actuation of Mechanized Nanoparticles, Journal of the American Chemical Society, 132 (2010) 10623-10625. [111] S.H. Choi, J.-H. Lee, S.-M. Choi, T.G. Park, Thermally Reversible Pluronic/Heparin Nanocapsules Exhibiting 1000-Fold Volume Transition, Langmuir, 22 (2006) 1758-1762. [112] R. Gref, A. Domb, P. Quellec, T. Blunk, R.H. Müller, J.M. Verbavatz, R. Langer, The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres, Advanced Drug Delivery Reviews, 16 (1995) 215-233. [113] S. Stolnik, B. Daudali, A. Arien, J. Whetstone, C.R. Heald, M.C. Garnett, S.S. Davis, L. Illum, The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1514 (2001) 261-279. [114] A. Besheer, J.r. Vogel, D. Glanz, J.r. Kressler, T. Groth, K. Mäder, Characterization of PLGA Nanospheres Stabilized with Amphiphilic Polymers: Hydrophobically Modified Hydroxyethyl Starch vs Pluronics, Molecular Pharmaceutics, 6 (2009) 407-415. [115] D. Cohn, H. Sagiv, A. Benyamin, G. Lando, Engineering thermoresponsive polymeric nanoshells, Biomaterials, 30 (2009) 3289-3296. [116] J.-P. Fortin, C. Wilhelm, J. Servais, C. Ménager, J.-C. Bacri, F. Gazeau, Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia, Journal of the American Chemical Society, 129 (2007) 2628-2635. [117] H. John R, Absence seizures: A review of recent reports with new concepts, Epilepsy &; Behavior, 15 (2009) 404-412. [118] E. Russo, R. Citraro, F. Scicchitano, S. De Fazio, E.D. Di Paola, A. Constanti, G. De Sarro, Comparison of the antiepileptogenic effects of an early long-term treatment with ethosuximide or levetiracetam in a genetic animal model of absence epilepsy, Epilepsia, 51 (2010) 1560-1569. [119] M.Z. Gören, F. Onat, Ethosuximide: From Bench to Bedside, CNS Drug Reviews, 13 (2007) 224-239. [120] V. Sanna, G. Pintus, P. Bandiera, R. Anedda, S. Punzoni, B. Sanna, V. Migaleddu, S. Uzzau, M. Sechi, Development of Polymeric Microbubbles Targeted to Prostate-Specific Membrane Antigen as Prototype of Novel Ultrasound Contrast Agents, Molecular Pharmaceutics, 8 (2011) 748-757. [121] J. Wu, H. Leong-Poi, J. Bin, L. Yang, Y. Liao, Y. Liu, J. Cai, J. Xie, Y. Liu, Efficacy of Contrast-enhanced US and Magnetic Microbubbles Targeted to Vascular Cell Adhesion Molecule–1 for Molecular Imaging of Atherosclerosis, Radiology, 260 (2011) 463-471. [122] T. Yin, P. Wang, R. Zheng, B. Zheng, D. Cheng, X. Zhang, X. Shuai, Nanobubbles for enhanced ultrasound imaging of tumors, International journal of nanomedicine, 7 (2012) 895-904. [123] Y. Chen, Y. Gao, H. Chen, D. Zeng, Y. Li, Y. Zheng, F. Li, X. Ji, X. Wang, F. Chen, Q. He, L. Zhang, J. Shi, Engineering Inorganic Nanoemulsions/Nanoliposomes by Fluoride-Silica Chemistry for Efficient Delivery/Co-Delivery of Hydrophobic Agents, Advanced Functional Materials, 22 (2012) 1586-1597. [124] Y. Chen, Q. Yin, X. Ji, S. Zhang, H. Chen, Y. Zheng, Y. Sun, H. Qu, Z. Wang, Y. Li, X. Wang, K. Zhang, L. Zhang, J. Shi, Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells, Biomaterials, 33 (2012) 7126-7137. [125] R. Suzuki, Y. Oda, N. Utoguchi, K. Maruyama, Progress in the development of ultrasound-mediated gene delivery systems utilizing nano- and microbubbles, Journal of Controlled Release, 149 (2011) 36-41. [126] B. Geers, H. Dewitte, S.C. De Smedt, I. Lentacker, Crucial factors and emerging concepts in ultrasound-triggered drug delivery, Journal of Controlled Release, 164 (2012) 248-255. [127] K.W. Ferrara, Driving delivery vehicles with ultrasound, Advanced Drug Delivery Reviews, 60 (2008) 1097-1102. [128] P.-L. Lin, R.J. Eckersley, E.A.H. Hall, Ultrabubble: A Laminated Ultrasound Contrast Agent with Narrow Size Range, Advanced Materials, 21 (2009) 3949-3952. [129] X. Wang, H. Chen, Y. Chen, M. Ma, K. Zhang, F. Li, Y. Zheng, D. Zeng, Q. Wang, J. Shi, Perfluorohexane-Encapsulated Mesoporous Silica Nanocapsules as Enhancement Agents for Highly Efficient High Intensity Focused Ultrasound (HIFU), Advanced Materials, 24 (2012) 785-791. [130] T.-Y. Liu, T.C. Huang, A novel drug vehicle capable of ultrasound-triggered release with MRI functions, Acta Biomaterialia, 7 (2011) 3927-3934. [131] Z. Liu, T. Lammers, J. Ehling, S. Fokong, J. Bornemann, F. Kiessling, J. Gätjens, Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging, Biomaterials, 32 (2011) 6155-6163. [132] M.G. Ewend, S. Brem, M. Gilbert, R. Goodkin, P.L. Penar, M. Varia, S. Cush, L.A. Carey, Treatment of Single Brain Metastasis with Resection, Intracavity Carmustine Polymer Wafers, and Radiation Therapy Is Safe and Provides Excellent Local Control, Clinical Cancer Research, 13 (2007) 3637-3641. [133] H.-Y. Huang, S.-H. Hu, C.-S. Chian, S.-Y. Chen, H.-Y. Lai, Y.-Y. Chen, Self-assembling PVA-F127 thermosensitive nanocarriers with highly sensitive magnetically-triggered drug release for epilepsy therapy in vivo, Journal of Materials Chemistry, 22 (2012) 8566-8573. [134] A. Besheer, J.r. Vogel, D. Glanz, J.r. Kressler, T. Groth, K. Ma?der, Characterization of PLGA Nanospheres Stabilized with Amphiphilic Polymers: Hydrophobically Modified Hydroxyethyl Starch vs Pluronics, Molecular Pharmaceutics, 6 (2009) 407-415. [135] H.P. Martinez, Y. Kono, S.L. Blair, S. Sandoval, J. Wang-Rodriguez, R.F. Mattrey, A.C. Kummel, W.C. Trogler, Hard shell gas-filled contrast enhancement particles for colour Doppler ultrasound imaging of tumors, MedChemComm, 1 (2010) 266-270. [136] D.M. El-Sherif, M.A. Wheatley, Development of a novel method for synthesis of a polymeric ultrasound contrast agent, Journal of Biomedical Materials Research Part A, 66A (2003) 347-355. [137] R. Barreiro-Iglesias, L. Bromberg, M. Temchenko, T.A. Hatton, A. Concheiro, C. Alvarez-Lorenzo, Solubilization and stabilization of camptothecin in micellar solutions of pluronic-g-poly(acrylic acid) copolymers, Journal of Controlled Release, 97 (2004) 537-549. [138] M.L. Fabiilli, K.J. Haworth, N.H. Fakhri, O.D. Kripfgans, P.L. Carson, J.B. Fowlkes, The role of inertial cavitation in acoustic droplet vaporization, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 56 (2009) 1006-1017. [139] S.B. Raymond, L.H. Treat, J.D. Dewey, N.J. McDannold, K. Hynynen, B.J. Bacskai, Ultrasound Enhanced Delivery of Molecular Imaging and Therapeutic Agents in Alzheimer's Disease Mouse Models, PLoS ONE, 3 (2008) 2175-2181. [140] V. Frenkel, K.C.P. Li, Potential role of pulsed-high intensity focused ultrasound in gene therapy, Future Oncology, 2 (2006) 111-119. [141] J.A. Poff, C.T. Allen, B. Traughber, A. Colunga, J. Xie, Z. Chen, B.J. Wood, C. Van Waes, K.C. Li, V. Frenkel, Pulsed high-intensity focused ultrasound enhances apoptosis and growth inhibition of squamous cell carcinoma xenografts with proteasome inhibitor bortezomib, Radiology, 248 (2008) 485-491. [142] P. Paparel, J.Y. Chapelon, A. Bissery, S. Chesnais, L. Curiel, A. Gelet, Influence of the docetaxel administration period (neoadjuvant or concomitant) in relation to HIFU treatment on the growth of Dunning tumors: results of a preliminary study, Prostate Cancer Prostatic Dis, 11 (2007) 181-186. [143] E. Gultepe, F.J. Reynoso, A. Jhaveri, P. Kulkarni, D. Nagesha, C. Ferris, M. Harisinghani, R.B. Campbell, S. Sridhar, Monitoring of magnetic targeting to tumor vasculature through MRI and biodistribution, Nanomedicine, 5 (2010) 1173-1182. [144] R.D.K. Misra, Core-shell magnetic nanoparticle carrier for targeted drug delivery: challenges and design, Materials Technology: Advanced Performance Materials, 25 (2010) 118-126. [145] Y. Yang, J.-S. Jiang, B. Du, Z.-F. Gan, M. Qian, P. Zhang, Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting, J Mater Sci: Mater Med, 20 (2009) 301-307. [146] M. Arruebo, R. Fernández-Pacheco, M.R. Ibarra, J. Santamaría, Magnetic nanoparticles for drug delivery, Nano Today, 2 (2007) 22-32. [147] P.-Y. Chen, H.-L. Liu, M.-Y. Hua, H.-W. Yang, C.-Y. Huang, P.-C. Chu, L.-A. Lyu, I.-C. Tseng, L.-Y. Feng, H.-C. Tsai, S.-M. Chen, Y.-J. Lu, J.-J. Wang, T.-C. Yen, Y.-H. Ma, T. Wu, J.-P. Chen, J.-I. Chuang, J.-W. Shin, C. Hsueh, K.-C. Wei, Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment, Neuro-Oncology, 12 (2010) 1050-1060. [148] V. Frenkel, Ultrasound mediated delivery of drugs and genes to solid tumors, Advanced Drug Delivery Reviews, 60 (2008) 1193-1208. [149] J.A. Feshitan, F. Vlachos, S.R. Sirsi, E.E. Konofagou, M.A. Borden, Theranostic Gd(III)-lipid microbubbles for MRI-guided focused ultrasound surgery, Biomaterials, 33 (2012) 247-255. [150] C.-Y. Ting, C.-H. Fan, H.-L. Liu, C.-Y. Huang, H.-Y. Hsieh, T.-C. Yen, K.-C. Wei, C.-K. Yeh, Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment, Biomaterials, 33 (2012) 704-712. [151] A.-H. Liao, H.-L. Liu, C.-H. Su, M.-Y. Hua, H.-W. Yang, Y.-T. Weng, P.-H. Hsu, S.-M. Huang, S.-Y. Wu, H.-E. Wang, T.-C. Yen, P.-C. Li, Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood–brain barrier opening and concurrent MR and ultrasound imaging, Physics in Medicine and Biology, 57 (2012) 2787. [152] S. Meairs, A. Alonso, Ultrasound, microbubbles and the blood–brain barrier, Progress in Biophysics and Molecular Biology, 93 (2007) 354-362. [153] M. Schneider, Characteristics of SonoVue™, Echocardiography, 16 (1999) 743-746. [154] J.R. Lindner, Microbubbles in medical imaging: current applications and future directions, Nat Rev Drug Discov, 3 (2004) 527-533. [155] R. Suzuki, T. Takizawa, Y. Negishi, K. Hagisawa, K. Tanaka, K. Sawamura, N. Utoguchi, T. Nishioka, K. Maruyama, Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound, Journal of Controlled Release, 117 (2007) 130-136. [156] T. Yin, P. Wang, J. Li, R. Zheng, B. Zheng, D. Cheng, R. Li, J. Lai, X. Shuai, Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas, Biomaterials, 34 (2013) 4532-4543. [157] Z. Xing, J. Wang, H. Ke, B. Zhao, X. Yue, Z. Dai, J. Liu, The fabrication of novel nanobubble ultrasound contrast agent for potential tumor imaging, Nanotechnology, 21 (2010) 145607. [158] Y. Wang, X. Li, Y. Zhou, P. Huang, Y. Xu, Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery, International Journal of Pharmaceutics, 384 (2010) 148-153. [159] C.-H. Wang, Y.-F. Huang, C.-K. Yeh, Aptamer-Conjugated Nanobubbles for Targeted Ultrasound Molecular Imaging, Langmuir, 27 (2011) 6971-6976. [160] T.L. Zhe Liu, Josef Ehling, Stanley Fokong, Jörg Bornemannc, Fabian Kiessling, Jessica Gätjens, Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging, Biomaterials, 32 (2011) 6155-6163. [161] X. Wang, H. Chen, Y. Chen, M. Ma, K. Zhang, F. Li, Y. Zheng, D. Zeng, Q. Wang, J. Shi, Perfluorohexane-Encapsulated Mesoporous Silica Nanocapsules as Enhancement Agents for Highly Efficient High Intensity Focused Ultrasound (HIFU), Advanced Materials, 24 785-791. [162] E.Y. Lukianova-Hleb, X. Ren, J.A. Zasadzinski, X. Wu, D.O. Lapotko, Plasmonic Nanobubbles Enhance Efficacy and Selectivity of Chemotherapy Against Drug-Resistant Cancer Cells, Advanced Materials, 24 (2012) 3831-3837. [163] R. Asmatulu, M.A. Zalich, R.O. Claus, J.S. Riffle, Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields, Journal of Magnetism and Magnetic Materials, 292 (2005) 108-119. [164] H.-L. Liu, M.-Y. Hua, H.-W. Yang, C.-Y. Huang, P.-C. Chu, J.-S. Wu, I.C. Tseng, J.-J. Wang, T.-C. Yen, P.-Y. Chen, K.-C. Wei, Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain, Proceedings of the National Academy of Sciences, 107 (2010) 15205-15210. [165] Y. Lu, J. McLellan, Y. Xia, Synthesis and Crystallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells, Langmuir, 20 (2004) 3464-3470. [166] H. Chen, A.A. Brayman, W. Kreider, M.R. Bailey, T.J. Matula, Observations of Translation and Jetting of Ultrasound-Activated Microbubbles in Mesenteric Microvessels, Ultrasound in medicine &; biology, 37 (2011) 2139-2148. [167] H. Chen, W. Kreider, A.A. Brayman, M.R. Bailey, T.J. Matula, Blood Vessel Deformations on Microsecond Time Scales by Ultrasonic Cavitation, Physical Review Letters, 106 (2011) 034301. [168] J.E. Chomas, P. Dayton, J. Allen, K. Morgan, K.W. Ferrara, Mechanisms of contrast agent destruction, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 48 (2001) 232-248. [169] S. Mitragotri, Healing sound: the use of ultrasound in drug delivery and other therapeutic applications, Nat Rev Drug Discov, 4 (2005) 255-260. [170] E.P. Stride, C.C. Coussios, Cavitation and contrast: The use of bubbles in ultrasound imaging and therapy, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224 (2010) 171-191. [171] E.-A. Brujan, Numerical investigation on the dynamics of cavitation nanobubbles, Microfluid Nanofluid, 11 (2011) 511-517. [172] E.G. Schutt, D.H. Klein, R.M. Mattrey, J.G. Riess, Injectable Microbubbles as Contrast Agents for Diagnostic Ultrasound Imaging: The Key Role of Perfluorochemicals, Angewandte Chemie International Edition, 42 (2003) 3218-3235.
|