跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李勁輪
研究生(外文):Keng-Lon Lei
論文名稱:應用強健控制于大離軸角飛彈自動駕駛設計
論文名稱(外文):Application of Robust Control Theory to Missile Autopilot Design with High Off-Boresight Angle
指導教授:楊憲東楊憲東引用關係何慶雄
指導教授(外文):Ciann-Dong YangC. S. Ho
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:119
中文關鍵詞:高攻角大離軸角強健控制飛彈控制渦流擴散
外文關鍵詞:High angle of attackHigh off-boresight angleH-infinity controlMissile flight controlVortex shedding
相關次數:
  • 被引用被引用:3
  • 點閱點閱:459
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
結合氣動力控制及向量推力控制,吾人設計了一套可應用在大離軸角(高達180度)飛彈彈頭反向迴轉階段的飛行自動駕駛系統。在強健控制理論的確保下,縱使飛彈模式存在著由氣動力系數變化所引發的不確定性,飛控系統仍然擁有強健的穩定能力以及強健的性能表現。同時,自動駕駛系統能克服不對稱的渦流擴散所可能引致的最大偏航力矩,使彈頭在迴轉時能保有適當的偏航角度。經過逼真的非線性六自由度模擬所証實,此自動駕駛系統的表現非常優異。由此顯示了強健控制在針對不同飛彈控制問題上的高度可行性。
An autopilot system for the heading reversal maneuvering (HRM) phase in missile engagement with high off-boresight angle up to 180 degrees has been successfully synthesized with the combination of aerodynamic control and thrust vector control (TVC). The application of H∞ control theory has provided the missile robustness (including robust stability and robust performance) properties in the presence of model uncertainty caused by aerodynamic coefficient variation. Simultaneously, autopilot has enabled the missile to resist the maximal possible yawing moment with any switching frequency induced by the vortex shedding during high angle-of-attack flight. Performance of this autopilot system was validated with a high-fidelity nonlinear six degree-of-freedom simulation. Excellent results have been brought out and the results manifest the feasibility of robust control for various missile control problems.
Chinese Abstract …………………………………………………………… i
Abstract ……………………………………………………………………… ii
Chinese Acknowledgment..…………………………………………………… iii
Nomenclature ………………………………………………………………… iv
Contents …………………………………………………………………… vi
List of Figures ……………………………………………………………… viii
1. Introduction ……………………………………………………………… 1
1.1 Motivation ……………………………………………………… 1
1.2 Publication Survey ……………………………………………… 2
1.3 Organization …………………………………………………… 4
2. Missile Aerodynamics …………………………………………………… 5
2.1 Different Nature from Airplane to Missile ……………………… 5
2.2 Definition of Axes and Angles ………………………………… 6
2.3 Nature of Aerodynamic Forces and Moments …………………… 8
2.4 Approximation of Aerodynamic Coefficients …………………… 12
2.5 Stability Derivatives…………………………………………… 20
2.6 Asymmetric Vortex Shedding …………………………………… 23
3. Missile Control System …………………………………………… 27
3.1Components of Missile Control System ………………… 27
3.1.1 Sensor Units ……………………………………… 27
3.1.2 Controller Units …………………………………… 28
3.1.3 Actuator Units …………………………………… 28
3.2Missile Aerodynamic Control …………………………… 29
3.3Missile Thrust Vector Control …………………………… 30
3.4Missile Control Configuration …………………………… 31
3.4.1 Wing Control Configuration …………………………31
3.4.2 Canard Control Configuration ………………………31
3.4.3 Tail Control Configuration …………………………31
3.5Missile Control Strategy …………………………………33
3.5.1 Skid-to-Turn Strategy ………………………………33
3.5.2 Bank-to-Turn Strategy ………………………………33
4. Dynamical Model of Missile …………………………………………35
4.1Rigid Body Equations of Motion for Missile ………………35
4.2Propulsive Force and Moment ……………………………39
4.3Actuator Model ……………………………………………40
4.4Linearized Missile Model …………………………………41
4.4.1 Longitudinal Motion …………………………………41
4.4.2 Lateral Motion ………………………………………44
4.5Trim Analysis ………………………………………………45
4.6Stability Derivative Approximation …………………………45
4.7Stability Analysis …………………………………………48
5. H∞ Control Theory……………………………………………………50
5.1Infinity-Norm and SVD ……………………………………50
5.2Linear Fractional Transformation ……………………………52
5.3Model Uncertainty …………………………………………53
5.4Robust Stability and Robust Performance ……………………54
5.5The General H∞ Control Problem ……………………………56
6. Autopilot Design ….……………………………………………………58
6.1Structure of Autopilot System ………………………………59
6.1.1 Guidance System ……………………………………59
6.1.2 Control Loop …………………………………………60
6.2Controller Design …………………………………………61
6.2.1 Longitudinal Controller ………………………………61
6.2.2 Lateral Controller ……………………………………71
6.3Controller Switching …………………………………………75
7. Six Degree-of-Freedom Simulation and Result ……………………………… 78
7.1Euler Angles and Quaternion ………………………………78
7.2Simulation Program Structure ………………………………80
7.3Simulation Result ……………………………………………83
7.3.1 Scenario I: Standard Case………………………………………83
7.3.2 Scenario II: Disable Lateral Controller ……………………85
7.3.3 Scenario III: High Turn Rate and Vortex Shedding Frequency …85
7.3.4 Scenario IV: A Worst-Case Study ……………………………86
8. Conclusion …………………………………………………………… 107
References …………………………………………………………………109
Appendix ………………………………………………………………… 113
1 Anderson, B. D. O. (1990), and Moore, J. B., Optimal Control - Linear Quadratic Metheds, Prentice-Hall Inc.
2 Anderson, J. D., Jr. (1984). Fundamentals of Aerodynamics, McGraw-Hill, ISBN 0-07-001656-9.
3 Arrow, A. and Yost, D. J. (1977). "Large Angle-of-Attack Missile Control Concepts for Aerodynamically Controlled Missile," Journal of Spacecraft, Vol. 14, No.10, pp. 606-613.
4 Arrow, A. (1985), "Status Concerns for Bank-to-Turn Control of Tactical Missile," J. of Guidance, Control and Dynamics, Vol. 8, No. 2, pp. 267-274.
5 Balas, G.. J., Doyle, J. C., Glover, K. Packard, A., and Smith, R. (1993). m-Analysis and Synthesis Toolbox User''s Guide, Math Works Inc.
6 Biernson, G. (1988), Principles of Feedback Control, John Wiley & Sons.
7 Blakelock, J. H. (1991). Automatic Control of Aircraft and Missiles, John Wiley & Sons, ISBN 0-471-50651-6.
8 Bugajski, D. J., and Enns, D. F. (1992). "Nonlinear Control Law with Applictaion to High Angle-of-Attack Flight," J. of Guidance, Control and Dynamics, Vol. 15, No.3, pp. 761-767.
9 Burns, K. A., Deters, K. J., Stoy, S. L., Vukelich, S. R. (1993), Missile Datcom User''s Manual - Revision 6/93, Wright Laboratory, WL-TR-93-3043.
10 Buschek, H. (1997). "Robust Autopilot Design for Future Missile Systems", Proceeding of AIAA GNC Conference, New Orleans, LA, AIAA-97-3763.
11 Doyle, J. C., and Stein, G. (1981), "Multivariable Feedback Design: Concepts for A Classical Modern Synthesis," IEEE Trans. on Automatic Control, AC-26, pp. 4-16.
12 Doyle, J. C. (1982), "Analysis of Feedback Systems with Structured Uncertainty," IEEE Proc., Vol. 129, pp.242-250.
13 Doyle, J. C. (1985), "Structured Uncertainty in Control System Design", Proc. 24th IEEE Conf. on Decision and Control, Ft. Lauderdale, pp. 260-265.
14 Doyle , J. C., Glover, K., Khargonekar, P. P., and Francis, B. A. (1989). "State-space Solutions to Standard H2 and H∞ Control Problems," IEEE Transactions on Automatic Control, AC-34, pp. 831-847.
15 Ericsson, L. E., and Reding, J. P. (1989). "Asymmetric Flow Separation and Vortex Shedding on Bodies of Revolution," Tactical Missile Aerodynamics: General Topics, AIAA, ISBN 1-56347-015-2, Vol. 141, Chap. 10, pp.391-452.
16 Ericsson, L. E. (1993). "Unsteady Flow Separation on Slender Bodies at High Angles of Attack," J. of Spacecraft and Rocket, Vol. 30, No. 6.
17 Ferreres, G., Fromion, V., Duc, G., and M''Saad, M. (1994). "Non Conservative Robustness Evaluation of A Multivariable H∞ Missile Autopilot," Proceedings of the American Control Conference, Baltimore, Maryland, pp. 3283-3287.
18 Francis, B. A. (1987), A Cource in H∞ Control, Lecture Notes in Control and Information Science, Spring-Verlag.
19 Franklin, G. F., Powell, J. D., and Emami-Naeini, A. (1994), Feedback Control of Dynamic Systems, Addison-Wesley publishing company.
20 Greedwood, D. T., (1988), Principles of Dynamics, Prentice-Hall Inc., ISBN 0-13-709981-9.
21 Hyde, R. A. (1995). H∞ Aerospace Control Design: A VSTOL Flight Application, Advances in Industrial Control Series, Springer Verlag London, ISBN 3-540-19960-8.
22 Keener, E. R., and Taleghani, J. (1975). "Wind Tunnel Investigations of the Aerodynamic Characteristics of Five Forebody Models at High Angle of Attack at Mach Numbers from 0.25 to 2," NASA TM X-73, 076.
23 Kuo, B. C. (1992), Automatic Control Systems, Prentice-Hall Inc.
24 Menon, P. K., and Yousefpor, M. (1996). "Design of Nonlinear Autopilots for High Angle of Attack Missile," Proceeding of AIAA GNC Conference, San Diego, CA. AIAA 96-3913.
25 Nelson, R.C. (1989). Flight Stability and Automatic Control, McGraw-Hill, ISBN 0-07-100835-7.
26 Nielsen, J. N. (1988). Missile Aerodynamics, NEAR, ISBN 0-9620629-0-1.
27 Reding, J. P. and Ericsson, L. E. (1980). "Maximum Side Forces and Associated Yawing Moments on Slender Bodies," Journal of Spacecraft, Vol.17, No.6, pp.515-521.
28 Sage, A. P., and White III, C. C. (1985), Optimum Systems Control, Prentice-Hall, Inc.
29 Stevens, B. L., and Lewis, F. L. (1992 ). Aircraft Control and Simulation, John Wiley & Sons, ISBN 0-471-61397-5.
30 Thukral, A., and Innocenti, M. (1998). "A Sliding Mode Missile Pitch Autopilot Synthesis for High Angle of Attack Maneuvering," IEEE Transactions on Control System Technology, Vol. 6, No. 3, pp.359-371
31 Williams, D. E., and Friedland, B. (1987). "Modern Control Theory for Design of Autopilots for Bank-to-Turn Missiles," J. of Guidance, Control and Dynamic, Vol. 10, No. 4, pp. 378-386.
32 Wise, K. A. (1990). "Bank-to-Turn Missile Autopilot Design Using Loop Transfer Recovery," J. of Guidance, Control and Dynamic, Vol. 13, No. 1, pp. 145-152.
33 Wise, K. A. (1991). "Missile Autopilot Robustness to Uncertain Aerodynamics: Stability Hypersphere Radius Calculation," J. of Guidance, Control, and Dynamics, Vol. 14, No. 1, pp. 166-175.
34 Wise, K. A. (1992). "Comparison of Six Robustness Tests Evaluating Missile Autopilot Robustness to Uncertain Aerodynamics," J. of Guidance, Control, and Dynamics, Vol. 15, No. 4, pp. 861-870.
35 Wise, K. A. (1993). "Missile Autopilot Robustness Using the Real Multiloop Stability Margin," J. of Guidance, Control, and Dynamics, Vol. 16, No. 2, pp. 354-362.
36 Wise, K. A., and Broy, D. J. (1996). "Agile Missile Dynamics and Control", Proceeding of AIAA GNC Conference, San Diego, CA, AIAA-96-3912.
37 Wise, K. A., and Sedwick, J. L. (1996). "Nonlinear H∞ Optimal Control for Agile Missile," J. of Guidance, Control and Dynamic, Vol. 19, No. 1, pp. 157-165.
38 Wise, K. A., and Sedwick, J. L. (1997). "Nonlinear Control of Agile Missiles Using State Dependent Riccati Equations," Proceedings of the American Control Conference, Albuquerque, New Meixco, pp.379-380.
39 Yang, C. D., Ju, H. S., and Liu, S. W. (1994a), "Experimental Design of H∞ Weighting Functions for Flight Control System," J. of Guidance, Control, and Dynamics, Vol. 17, No.3, pp. 544-552.
40 Yang, C. D., Tai, H. C., and Lee, C. C. (1994b), "Systematic Approach to Selecting H∞ Weighting Functions for DC Servos," Proc. of 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, Orlando, Florida, Vol. 2, pp. 1080-1085.
41 Zhou, K. M., Khargonekar, P. P. (1988). "An Algebraic Riccati Equation Approach to Hinf Optimization," System & Control Letters, No. 11, pp. 85-91.
42 Zhou, K. M. (1998). Essentials of Robust Control, Prentice-Hall, ISBN 0-13-790874-1.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top