跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李建弘
研究生(外文):Chang-Hong Lee
論文名稱:奈米Fe-Ni複合CNT及氧化鋁處理AO7、Pb+2、HSeO3-溶液之研究
論文名稱(外文):A Study of treatment the simultaneous AO7、Pb+2 and HSeO3- in Solution by Composite Fe-Ni/ CNTs and Fe-Ni/Al2O3
指導教授:洪肇嘉洪肇嘉引用關係
指導教授(外文):Jao-Jia Horng
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:163
中文關鍵詞:組合表反應曲面法實驗設計直交表變異數分析
外文關鍵詞:Response SurfaceOrthogonal Experimental Design
相關次數:
  • 被引用被引用:1
  • 點閱點閱:509
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鑒於環境水體中污染物日趨複雜,如何有效同時處理水體中陰、陽離子複雜污染物日益受重視,因此本研究將Fe-Ni奈米粒子散布固定於CNT與Al2O3載體,保有奈米微粒特性與易操作特性,利用無電鍍法於其表面製作長效型鐵鎳合金奈米觸媒,處理污染物:陰性染料(Acid Orange 7 ; AO7)、陰離子污染物(HSeO3-)及陽離子污染物(Pb+2)。以田口式直交表實驗設計(Orthogonal Experimental Design;OED)對吸附劑種類、鐵添加量、pH值、AO7濃度、Pb+2濃度、HSeO3-濃度、時間等七個獨立變因,配合L18(21×73)進行實驗,並藉由變異係數分析(The Analysis of Variance;ANOVA)評估處理之最佳操作條件。並挑選影響最大之三個變因及使用反應曲面法(Response Surface Methods;RSM)以組合表(Combined Array)實驗研究因子之交互作用,結果顯示Fe-Ni/CNT處理Pb+2、AO7及HSeO3-之去除率達98.2%、91.8%及29.2%。亞硒酸去除率低可能因為陰性AO7與亞硒酸間之競爭吸附現象。
In view of water pollutants becoming more complex, how to effectively treat anions and cations pollutants had attract more attentions.This research used the aluminum oxide and nano carbon tube (CNT) as carriers particles and used redox method to deposit nano iron-nickel form composite materials. This study used Orthogonal Experimental Design (OED) and Analysis of Variance (ANOVA) to design the test for treating dye AO7, HSeO3- and Pb+2. The OED included seven dependent factors of adsorbent type, amount of Fe-Ni, solution pH , AO7 concentrations, Pb+2 concentrations, HSeO3- concentrations and reaction time. Then, this study selected three important factors to further study interactions the Response Surface Methods (RSM) and Combined Array (CA) for the experiments. The result showed that using Fe-Ni/CNT as adsorbent to treatment complex pollutants of Pb+2, AO7and HSeO3- could reach 98.25%, 91.8% and 29.2%. The removal of HSeO3- were somewhat ineffective because of the competitive adsorption between AO7 and HSeO3- .
第一章 緒論
1.1研究緣起與動機
1.2 研究目的
1.3研究架構
第二章 文獻回顧
2.1 鉛和硒污染物來源
2.1.1 鉛的危害與物化特性及去除方法
2.1.2 硒的危害與物化特性及去除方法
2.2 偶氮染料
2.2.1 偶氮染料之危害
2.2.2染整廢水之處理技術
2.3奈米鐵之發展
2.3.1奈米金屬材料製備相關技術
2.3.2奈米金屬材料分散性能探討
2.4奈米碳管
2.4.1奈米碳管吸附重金屬的研究
2.4.2 奈米碳管去除有機污染物的研究
2.4.3 奈米碳管前處理之研究
2.5吸附理論
2.5.1物理與化學吸附
2.5.2特定與非特定吸附
2.5.3影響吸附能力因素
2.6實驗設計(Experimental Design)方法
2.6.1田口(Taguchi)實驗設計法與文獻
2.6.2反應曲面(Response Surface)實驗設計
2.6.3實驗設計比較
第三章 研究材料與方法
3.1實驗材料及藥品
3.2實驗儀器設備
3.3實驗流程概述
3.4實驗之設計
3.4.1田口式實驗設計-直交表及變異數分析(ANOVA)3.4.2反應曲面法-中央合成設計及迴歸分析
3.5實驗儀器
3.5.1分光光度計分析儀
3.5.2感應耦合電漿光譜儀
3.5.3 X-ray繞射分析儀
3.5.4傅立葉紅外線轉換光譜儀
3.5.5穿透式電子顯微鏡
3.5.6掃描式電子顯微鏡
3.5.7比表面積分析儀
3.5.8界達電位儀
3.6實驗方法
3.6.1前置實驗
3.6.2複合材料共處理(Pb2+、HSeO3- 、AO7)實驗
3.6.3分析方法
3-7 樣品分析之QA/QC
3-7-1 分光光度計分析
3-7-2 ICP重金屬離子分析
3-7-3 pH量測分析
第四章 結果與討論
4.1 材料之特性分析
4.1.1界達電位測定(Zeta potential)
4.1.2 掃描式及穿透式電子顯微鏡分析(SEM及TEM)4.1.3 XRD晶相測定分析
4.1.4比表面積分析(BET)
4.1.5表面官能基鑑定分析(FT-IR)
4.1.6 CNT純度分析
4.2單一污染物試驗
4.2.1奈米複合材料對AO7之去除成效
4.2.2奈米複合材料處理Pb+2之試驗
4.2.3奈米複合材料處理HSeO3-之試驗
4.2.4等溫吸附平衡實驗
4.3混合污染物之田口直交表實驗結果及數據分析
4.3.1直交表L18實驗
4.3.2實驗結果分析
4.4反應曲面法實驗設計及參數最佳化分析
4.4.1反應曲面法組合表實驗設計
4.4.2反應曲面法組合表數據分析
4.4.3反應曲面圖與等高線圖及最佳化參數
4.5綜合比較分析
第五章 結論與建議
5.1結論
5.2建議
參考文獻
附錄
附錄一 各種吸附劑對AO7之吸附平衡實驗數據
附錄二 各種吸附劑對Pb+2之吸附平衡實驗數據
附錄三 各種吸附劑對HSeO3-之吸附平衡實驗數據
附錄四 L18 ICP分析數據
附錄五 反應曲面法組合表ICP分析數據
附錄六 Fe-Ni/Al2O3和Fe-Ni/CNT單一污染物水溶液釋放Fe、Ni量
附錄七 真色色度檢測數據(NIEA W223.50B)
附錄八 QA/QC
附錄九 等溫吸附實驗數據
Alessi D. S. and Li Z. (2001) “Synergistic Effect of Cationic Surfactants on Perchloroethylene Degradation by Zero-Valent Iron,” Environmental Science & Technology, Vol. 35, 1713-1717.
Brown P. A., Gill S. A. and Allen S. J.(2000) “Metal removal from wastewater using peat”, Water Research, Vol. 34, 3907.
Buckley C. A.(1992)“ Membrane Technology for the Treatment of Dyehouse Effluents,” Water Science and Technology, Vol. 25, 203-209.
Bull R. J., Brinbaum L. S., Cantor K. P., Rose J. B., Butterworth B.E., Pegram R. and Tuomisto J.(1995) "Water chlorination: essential process and cancer hazard." Fund. Appl. Toxicol, Vol. 28, 155-166.
Can M. Y., Kaya Y., and Algur F., (2006) “Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris,” Bioresource Technology, Vol. 97 1761–1765.
Cao J. and Zhang W. X.(2006) “Stabilization of Chromium Ore Processing Residue (COPR) with Nanoscale Iron Particles,” Journal of Hazardous Materials, Vol. 132, 213-219.
Chiron N., Guilet R. and Deydier E.(2003) “Adsorption of Cu(II) and Pb(II) onto a grafted silica:isotherms and kinetic models”, Water Research, Vol. 37, 3079.
Choe S. Y., Chang Y., Hwang K. Y., and Khim J.(2000) “Kinetics of Reductive Denitrification by Nanoscale Zero-Valent Iron,” Chemosphere, Vol. 41(8), 1307-1311.
Choi W., Termin A. and Hoffmann M. R. (1994) “The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” Chemical Physics Letters, Vol. 98, 13669–13679.
Chung K.T., Chen S.C. and Claxton L. D.(2006)“ Review of the Salmonella typhimurium mutagenicity of benzidine, benzidine analogues, and benzidine-based dyes,” Mutation Research, Vol. 31(8), 58-76.
Díaz E., Ordóñez S. and Vega A. (2007) “Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites,” Journal of Colloid and Interface Science, Vol. 305, 7–16.
Elliott D. W. and Zhang W. X.(2001) “Field assessment of nanoscale bimetallic particles for groundwater treatment,” Environmental Science & Technology, Vol. 35, 4922-4926.
El-Shafey E.I. (2007) “Removal of Se(IV) from aqueous solution using sulphuric acid-treated peanut shell,” Journal of Environmental Management, Vol. 84 620–627.
Furukawa Y. J., Kim W., Watkins J. and Wilkin R. T.(2002)“Formation of Ferrihydrite and Associated Iron Corrosion Products in Permeable Reactive Barriers of Zero-Valent Iron,” Environmental Science & Technology, Vol. 36, 5469-5475.
Garg U. K., Kaur M.P., Garg V.K. and Sud D. (2008) “Removal of Nickel(II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach,” Bioresource Technology, Vol. 99 1325–1331.
Gregg S. J. and Sing K. S.,(1967) Adsorption area and porosity. Academic press, London and New York.
Haye K. F. and Leckie J. O.(1987) “Modeling Ionic Strength Effect on Adsorption at Hydrous Oxides/ Solution Interface,” Journal of Colloid Interface Science, Vol.115, 564-572.
Haye K. F. and Leckie J. O.(1988) "Modeling Ionic Strength Effect on Adsorption at Hydrous Oxides/ Solution Interface," Journal of Colloid Interface Science , Vol. 125, 717-726.
He F. and Zhao D.(2005)“Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water,” Environmental Science & Technology, Vol 39(9), 3314-3320.
Hsieh S. H., Horng J. J. and Tsai C. K.(2006) “Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions,” Journal of Materials Research, Vol. 21(5), 1269-1273.
Hsieh S.H. and Horng J.J.(2004)“ Fabrication of Nano-Iron-Nickel particles to De-chlorinate Chloroform and Trichloroethene, ” 2004, International Symposium on Environmental Nanotechnology, Taipei, Taiwan, December 1-3.
Hsieh S.H. and Horng, J.J.(2004)“The Reaction Mechanism of Decomposing Chloroform by Bi- metallic Nano- Particles of Fe/Ni,” presented at the 227th American Chemical Society National Meeting, Anaheim, CA, USA, March 28-April 1, vol. 44 No.1.
Jaikumar V., Ramamurthi V.(2008)“Optimization of Batch Process Parameters by Response Surface Methodology for Colour Removal Using Spent Brewery Grains,” International Conference on Environmental Research and Technology.
Kandah M. I.(2004)“Zinc and cadmium adsorption on low-grade phosphate,” Separation and Purification Technology, Vol. 35, 61.
Kanel S. R., Greneche J. M. and Choi H.(2006)“Arsenic(V) Removal from Groundwater Using Nano Scale Zero-Valent Iron as a Colloidal Reactive Barrier Material,” Environmental Science & Technology, Vol. 40, 2045-2050.
Karabulut S., Karabakan A., Denizli A. and Yurum Y.(2000)“Batch removal of Copper(II) and Zinc(II) from aqueous solutions with low-rank Turkish coals,” Separation and Purification Technology, Vol. 18, 177.
Kirk R. E.(1995)Experimental Design: Procedures for the Behavioral Sciences (3rd ed.), Pacific Grove, CA: Brooks/Cole.
Kryukova G. N., Zenkovets G. A., Shutilov A. A., Wilde M., Günther K., Fassler D. and Richter K. (2007) “Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 Dye upon ultraviolet light,” Applied Catalysis B: Environmental , Vol. 71 169–176.
Kuan W., Lo S., Wang M. K. and Lin C. (1998) “Removal of Se(IV) and SE(VI) from water by aluminum-oxide-coated sand,” Water Research, Vol. 32 (3) 915–923.
Kyung H., Lee J. and Choi W. (2005) “Simultaneous and Synergistic Conversion of Dyes and Heavy Metal Ions in Aqueous TiO2 Suspensions under Visible-Light Illumination,” Environmental Science & Technology, Vol. 39, pp. 2376-2382.
Li Y. H., Ding J., Luan Z., Di Z., Zhu Y., Xu C., Wu D. and Wei B.(2003)“Competitive adsorption of Pb+2, Cu+2 and Cd+2 ions from aqueous solutions by multiwalled carbon nanotubes,” Carbon, Vol. 41, 2787.
Li Y. H., Wang S., Luan Z., Ding J., Xu C. and Wu D.(2003) “Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes,” Carbon, Vol. 41, 1057.
Li Y. H., Wang S., Wei J., Zhang X., Xu C., Luan Z., Wu D. and Wei B. (2002)“Lead adsorption on carbon nanotubes,” Chemical Physics Letters, Vol. 357, 263-266.
Li Y. H., Wang S., Zhang X., Wei J., Xu C., Luan Z. and Wu D.(2003) “Adsorption of fluoride from water by aligned carbon nanotubes,” Meterials Research Bulletin, Vol. 38, 469-476.
Li Y. H., Zhu Y., Zhao Y., Wu D. and Luan Z.(2006)“Different morphologyies of carbon nanotubes effect on the lead removeal from aqueous soluteion,” Diamond & Related Materials, Vol. 15, 90-94.
Li Y., Wang S., Cao A., Zhao D., Zhang X., Xu C., Luan Z., Ruan D., Liang J., Wu D. and Wei B.(2001)“Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes,” Chemical Physics Letters, Vol. 350, 412–416.
Li Y.H., Wang S., Wei J., Zhang X., Xu C., Luan Z., Wu D. and Wei B. (2002) “Lead adsorption on carbon nanotubes,” Chemical Physics Letters, Vol. 357, 263–266.
Lien H. L. and Zhang W. X.(2001) “ Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes,”Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 191, 97-105.
Lindman H.R.(1992)Analysis of Variance in Experimental Design. Springer-Verlag, New York.
Liu Y., Yang F., Yue P. L. and Chen G. (2001)“Catalytic dechlorination of chlorophenols in water by palladium/iron,” Water Research, Vol. 35(8), 1887-1890.
Lo S. and Chen T. (1997) “Adsorption of Se(IV) and Se(VI) on an iron-coated sand from water,” Chemosphere, Vol. 45 (5) 919–930.
Lu C. and Su F.(2007)“Adsorption of natural organic matter by carbon nanotubes,” Separation and Purification Technology, Vol. 58, 113-121.
Lu C. (2006)“Adsorption of zinc (II) from water with purified carbon nanotubes,” Chemical Engineering Science, Vol. 61, 1138-1145.
Lu C., Chung Y. L. and Chang K. F.(2005)“Adsorption of trihalomethanes from water with carbon nanotubes,” Water Research, Vol. 39, 1183-1189.
Masciangioli T. and Zhang W. X.(2003)“Environmental Technologies at the Nanoscale,”Environmental Science & Technology, Vol.37(5), 102A-108A.
Morrill L. G., Mahilum B. C. and Mohiuddin S. H. (1982)Sorption Degradation and Persistence, New York.
Netzer A. and Hughes D. E.(1984)“Adsorption of copper, lead and cobalt by activated carbon,” Water Research, Vol. 18(8), 927.
Oguz E., Keskinler B., Çelik C. and Çelik Z. (2006)“Determination of the optimum conditions in the removal of Bomaplex Red CR-L dye from the textile wastewater using O3, H2O2, HCO3− and PAC,” Journal of Hazardous Materials, Vol. 131, pp. 66-72.
Pang L. K., Saxby J. D., and Chatfield S. P.(1993)“Thermogravimetric analysis of carbon nanotubes and nanoparticles,“ Journal of Physical Chemistry,Vol. 27, 6941-6942.
Peng X., Li Y., Luan Z., Di Z., Wang H., Tian B. and Jia Z. (2003)“Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes,” Chemical Physics Letters, Vol. 376, 154–158.
Phenrat T., Saleh N., Sirk K., Tilton R. D., and Lowry G. V.(2007)“Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions,” Environmental Science & Technology, Vol. 40(1), 284-290.
Rott U. and Minke R.(1999)“Overview of Wastewater Treatment and Recycling in the Textile Processing Industry,” Water Science and Technology, Vol. 40, 137-144.
Rovira M., Gimenez J., Martınez M., Martınez-Llado X., Pablo J. d., Mar V., and Duro L. (2008) “Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and Hematite,” Journal of Hazardous Materials, Vol. 150 279–284.
Shelimov K. B., Esenaliev R. O., Rinzler A. G., and Huffman C. B.,(1998)“Purification of single-walled carbon nanotubes by ultrasonically assisted filtration,” Chemical Physics Letters, Vol. 282, 429-434.
Shu H. Y., Chang M. C., and Fan H. J.(2004)“Decolorization of Azo Dye Acid Black 1 by the UV/H2O2 Process and Optimization of Operating Parameters,” Journal of Hazardous Materials B, Vol. 113, 201-208.
Silva J. P., Sousa S., Rodrigues J., Antunes H., Porter J. J., Gonçalves I. and Ferreira-Dias S. (2004) “Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains,” Separation and Purification Technology, Vol. 40 309–315.
Smith J. M., Van Ness H. C. and Abbott M. M.(1996)Introduction to Chemical Engineering Thermodynamics. McGrawHill, New York.
Sone H., Fugetsu B., Tsukada T. and Endo M.(2008)“Affnity-based eliminateion of aromatic VOCs by highly crystalline multi-walled carbon nanotubes,” Talanta, Vol. 74, 1265-1270.
Stafiej A. and Pyrzynska K.(2007)“Adsorption of heavy metal ions with carbon nanotubes,” Separation and Purification Technology, Vol. 58, 49-52.
Stylidi M., Kondarides D. I. and Verykios X. E., (2004) “Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions,” Applied Catalysis B: Environmental, Vol. 47, pp. 189-201.
Tsang S. C., Harris P. J., and Green M. L.(1993)“Thinning and opening of carbon nanotubes by oxidation using carbon dioxide,” Nature, Vol. 62, 520.
Wang C. B. and Zhang W. X.(1997)“Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs,” Environmental Science & Technology, Vol. 31, 2154-2156.
Zhang W. X.(2003)“Nanoscale Iron Particles for Environmental Remediation: An Overview,” Journal of Nanoparticle Research, Vol.5, 323-332.
尹邦躍,2002,奈米時代,五南圖書出版股份有限公司,台北市。
王勇勝,2008,“TiO2在不同光波源降解染料AO7及RhB之研究”,國立雲林科技大學環境與安全衛生工程系,碩士論文。
王拯、張鳳寶,2008,“磁載光催化劑TiO2/Al2O3/γ-Fe2O3的製備與降解染料的優化模型”,環境化學(中國),第27卷,第3期,第283-287頁。
行政院環境保護署,2007,水污染防治法第七條第二項,http://w3.epa.gov.tw/epalaw/search/LordiDispFull.aspx?ltype=06&lname=0010。
吳先琪、王郁翔、魏裕庭,2005 ,“The Preparation and Evaluation of Dispersed Nano-scale Iron Suspension for the Purposes of Environmental Remediation”,第二屆環境保護與奈米科技學術研討會論文集,第257-263 頁,新竹市。
李輝煌,2000,田口方法:品質設計的原理與實務,高立出版股份有限公司,台北市。
李曉嵐,2003,“奈米鐵粉結合電動力法處理含硝酸鹽土壤之研究”,國立中山大學環境工程研究所,碩士論文。
沈明來,1997,試驗設計學,九州書局,台北市。
阮國棟,2007,“奈米技術於環保領域應用之科技發展方案 ”,行政院環境保護署,奈米國家型科技計畫,2007年10月8日,台北市。
林虹君,2006,“溶氧與氮源對生物復育能力與菌群結構之影響研究”,大葉大學環境工程系,碩士論文。
施永生、周明、王琳,2006,“離子交換法去除原水中六價硒之研究”,中國給水排水,第30期,第6卷,第48-50頁。
施周、張文輝,2006,環境奈米技術,五南圖書出版股份有限公司,台北市。
唐哲偉、黃振穎、高楊智偉、謝明勳,2007,“利用田口法和凝膠技術製備奈米TiO2粉末之研究”,國立虎尾科技大學,專題論文。
孫蘭萍、張勝義、許暉、趙大慶、張斌,2006,“殼聚糖吸附亞硒酸的動力學研究”,食品科學基礎研究(中國),文章編號002-6630(2006)04-0092-04。
張立德、牟季美,2002,奈米材料和奈米結構,滄海書局,台中市。
張軒庭、彭徐鈞,2008,“基於影像處理的奈米鐵-鎳粒子/氧化鋁粉末之粒徑量測與分析”,奈米科技專題競賽,國立雲林科技大學。
曹茂盛、關長斌、徐甲強,2002,奈米材料導論,學富文化事業有限公司,台北市。
郭啟祥,2003,“以電聚浮除法處理Acid Orange 6 廢水之效能評估探討”,國立台灣大學環境工程研究所,碩士論文。
郭清癸、黃俊傑、牟中原,2001,“金屬奈米粒子的製造”,物理雙月刊,第23 卷 第6 期,第614-624 頁。
陳彥旻,2003,“半導體廠化學機械研磨廢水回收處理再利用技術研究”,國立成功大學環境工程學系,碩士論文。
喻家駿,2001,“利用UV/H2O2、O3及UV/O3光化學氧化法處理反應性染料廢水之研究”,私立逢甲大學環境工程與科學研究所,碩士論文。
游勝傑、歐尚鑫、曾迪華,2004,“薄膜生物反應槽處理含染整工業廢水之研究”,第九屆水再生及再利用研討會論文集,第245-256頁,中壢市。

黃建翔、蔡宜蓁、楊文都,2005,“應用溶膠-凝膠法製備SiO2-TiO2光學薄膜之研究”,中國化學年會。
黃國軒, 2006,“利用TiO2結合奈米碳管降解偶氮系染料之研究”,國立雲林科技大學環境與安全衛生工程系,碩士論文。
黃暉,2008,“活性碳吸附除硒影響因素研究”,環境科學學刊(中國),文章編號:1673—9655(2008)04—0070—03。
楊金鐘、洪志雄、張德光,2005,“奈米級鈀/鐵雙金屬:製備、基本性質及催化活性”,第二屆環境保護與奈米科學技術研討會論文集,第48-55 頁,新竹市。
葉怡成,2001,實驗計劃法-製程與產品最佳化,五南圖書出版公司, 6月。
詹志洁、張忠傑、許文嘉、朱慧娟,2006,“田口方法TiO2中空球合成研究”,製程工程學報(中國),文章編號:1009-606X(2006)S2-0302-04。
詹雅婷,2007,“以二元氧化物系統移除硒酸鹽與亞硒酸鹽”,國立台灣大學農業化學研究所,碩士論文。
廖彥智,2000,“活性碳織物電吸附對染整廢水脫色效能之探討”, 大華技術學院化工系,計劃編號 : NSC 90-2218-E223-005。
蔡正國,2005,“複合奈米碳管吸附水溶重金屬污染物之應用研究 ”,國立雲林科技大學環境與安全衛生工程系,碩士論文。
蔡正國、洪肇嘉、謝淑惠,2004,“奈米碳管/氧化鋁(CNTs/Al2O3)吸附鉛及其他重金屬之效果探討” 第一屆環境保護與奈米科技學術研討會論文,P11-16,交通大學。
黎正中、陳源樹編譯,2003,實驗設計與分析,高立圖書有限公司,台北縣。
戴互洲,周明華,雷采成,2006,“響應面法優化濕式氧化處理陽離子紅X-GRL廢水”,浙江大學學報(中國),第40卷 第11期,第1890-1894 頁。
謝佑岱,2007,“以沸石擔持二氧化鈦光觸媒之製備方法及特性研究”,國立中興大學環境工程學系,碩士論文。
謝淑惠,洪肇嘉,2003,“Fe/Ni複合奈米金屬粒子分解氯仿的反應研究”,第一屆國際環境災害及緊急應變技術研討會論文。
謝淑惠,洪肇嘉,2005,“Using Fe-Ni nanoparticles deposited on aluminum oxides to decompose chlorinated solvent compounds”,第二屆環境保護與奈米科技學術研討會論文,清華大學,P264-271。
謝淑惠等,2008,“複合奈米材料固定化與共處理之研究 ”,行政院環境保護署,綠色奈米技術之開發及應用計畫,2008年11月30日。
鍾耀磊、張冠甫、盧重興,2004,“奈米碳管吸附自來水中三鹵甲烷之研究”,第一屆環境保護與奈米科技學術研討會。
顏上惟,2000,“紡織染整業推行ISO 14001環境管理系統之先期審查”,品質月刊,第29-32頁。
羅泳勝,2005,“以反應曲面實驗設計法探討本土厭氧產氫菌Clostridium butyricum CGS2 之最佳醱酵產氫條件”,國立成功大學化學工程學系,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top