跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2026/01/16 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅伊呈
研究生(外文):Yi Cheng Luo
論文名稱:以射頻共濺鍍方式沉積鋯摻雜於氧化鋅薄膜電晶體之研究
論文名稱(外文):The Investigation of Zr doped ZnO Thin Film Transistor by RF co-sputtering technology
指導教授:邱顯欽
指導教授(外文):H. C. Chiu
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:95
中文關鍵詞:鋯摻雜氧化鋅薄膜電晶體低頻雜訊價電帶偏移
外文關鍵詞:Zr doped ZnOthin-film transistors (TFTs)low-frequency noise (LFN)valence band offset (VBO)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要闡述ZnO TFT和ZnZrO TFT使用Gd2O3利用蒸鍍的方式做為閘極絕緣層,利用射頻共濺鍍的沉積方式,將鋯有效的摻雜氧化鋅做為薄膜電晶體以有效的解決電特性。
先以XPS的量測方式可以知道Gd2O3/ZnO和Gd2O3/ZnZrO異質結構能量不連續的能帶偏移,藉以得到△EV和△EC。然而Gd2O3 /ZnZrO的△EC為3.98eV,在電特性上會比Gd2O3/ZnO (△EC=3.62)要來的要穩定。而ZnZrO TFT的threshold voltage、sub-threshold slope和mobility分別為-0.96V、0.214V/decade、2.46×106和1.06cm2/V-s。
此外還觀察了ZnZrO TFT和ZnO TFT的低頻雜訊的行為,經過鋯摻雜氧化鋅,是可以大幅減少載子在通道中trapping/detrapping的波動,ZnZrO TFT和ZnO TFT的霍格常數分別為 H~1.18×10-1和 H~5.5×105。

This work elucidates the properties of ZrZnO and ZnO TFTs devices using reactively evaporated Gd2O3 as a gate dielectric. Effects of zirconium (Zr) doping on the performance of resolve processed zinc oxide (ZnO) thin-film transistors (TFTs) grown using the RF cosputtering method are investigated. We measured the energy discontinuity in the band offsets (ΔEc and ΔEv) of Gd2O3/ZrZnO and Gd2O3/ZnO heterostructures using x-ray photoelectron spectroscopy (XPS).
The Gd2O3/ZrZnO TFTs showed the better conduction band (ΔEc = 3.98) and electrical stability performances than those of the Gd2O3/ZnO (ΔEc = 3.62) TFTs. For the ZrZnO device with a threshold voltage (VTH) is -096V, the sub-threshold slope (S.S) is 0.214 V/decade, the Ion/Ioff ratio is 2.46x106 and mobility is 1.06cm2/V-s.
In addition, we also observe that the low-frequency noise (LFN) behaviors of ZrZnO and ZnO thin-film transistors. The fluctuation that is caused by trapping/detrapping can be reduced by effects of Zr doping on the performance of TFTs devices. The Hooge’s parameters are extracted to be αH ∼1.18×10-1 for the ZrZnO TFTs and αH ∼ 5.5×105 in the ZnO TFTs.

目錄
指導教授推薦書.............................................................. i
口試委員會審定書........................................... ii
長庚大學博碩士論文著作授權書……………………………...………iii
致謝................................................................ iv
中文摘要............................................................. v
英文摘要........................................................ vi
目錄....................................................................... vii
圖目錄.......................................................................x
表目錄................................................................xii
第一章 緒論..................................................................1
1.1 研究動機..........................................................1
1.2 介紹....................................................3
1.2.1 薄膜電晶體導論 ....................................3
1.2.2 薄膜電晶體結構介紹....................................4
1.2.3 薄膜電晶體操作原理.................................6
1.2.4 氧化鋅晶體特性.............................. 11
1.3 論文架構.........................................................13
第二章 絕緣層/通道層之介面能帶偏移分析..........................................14
2.1 樣品製作流程................................................14
2.2 Gd2O3/ZnO能帶偏移分析..............................15
2.3 Gd2O3/ZnZrO能帶偏移分析..................................... 20
第三章 氧化鋅薄膜電晶體製作與量測.............................................24
3.1 元件製作流程.................................................................................. 24
3.2 ZnO TFT量測結果分析................................................................ 29
3.2.1 直流量測.....................................29
3.2.2 低頻雜訊量測....................................33
第四章 氧化鋅鋯薄膜分析.......................................38
4.1 氧化鋅鋯薄膜組成元素分析.........................................38
4.1.1 能量散射光譜儀量測分析 …......................................38
4.1.2 成分及鍵結型態量測分析 ...........................................41
4.1.3 X光繞射量測分析 ..........................................................44
4.2 氧化鋅鋯薄膜表面量測分析.......................................................45
4.3 薄膜電性量測分析...................................51
4.3.1 薄膜的電特性分析.......................................................... 51
4.3.2 薄膜透光度量測分析 ....................................................52
第五章 氧化鋯鋅薄膜電晶體製作與量測 ...............................................56
5.1 元件製作流程............................................... 56
5.2 ZnZrO (Cr/Al) TFT量測結果與分析…......................................57
5.2.1 直流量測..........................................57
5.2.2 低頻雜訊量測....................................................................62
5.3 ZnZrO (Ti/Au) TFT量測結果與分析.........................................66
5.3.1 直流量測....................................................66
5.3.2 低頻雜訊量測 ..................................................................70
5.4 可靠度量測與分析..........................................75
第六章 結論...........................................................79
參考文獻..................................................................80


圖目錄
圖1.1 應用在矽TFT和金屬氧化物TFT顯示器產品..........................................1
圖1.2 Top Gate和Bottom Gate TFT優缺點比較..........................................5
圖1.3 IDS-VDS特性曲線圖.............................................7
圖1.4 N-MOSFET IDS-VDS分別在(a)線性區(b)剛進入飽和區(c)飽和區 ..........8
圖1.5 (a)轉移特性IDS-VGS圖(b)轉移電導Gm圖........................................9
圖1.6 氧化鋅晶體結構............................................................. 11
圖2.1 ZnO、Gd2O3和Gd2O3/ZnO全譜圖............................................ 15
圖2.2 ZnO和Gd2O3/ZnO Zn 2p能譜圖.......................................... 16
圖2.3 ZnO和Gd2O3/ZnO Gd 4d能譜圖........................................ 17
圖2.4 Gd2O3價電帶能譜圖.........................................................18
圖2.5 ZnO價電帶能譜圖..................................................18
圖2.6 Gd2O3/ZnO的band alignment....................................19
圖2.7 ZnZrO、Gd2O3和Gd2O3/ ZnZrO全譜圖.................................. 20
圖2.8 ZnZrO和Gd2O3/ ZnZrO Zn 2p能譜圖.........................................21
圖2.9 ZnZrO和Gd2O3/ ZnZrO Gd 4d能譜圖................................ 22
圖2.10 ZnZrO價電帶能譜圖.......................................................22
圖2.11 Gd2O3/ ZnZrO的band alignment................................................23
圖3.1 ZnO TFT元件結構圖........................................................28
圖3.2 ZnO TFT IDS-VDS特性圖........................................................29
圖3.3 ZnO TFT IDS-VGS-gm特性圖................................................. 31
圖3.4 ZnO TFT Log IDS-VGS特性圖................................................31
圖3.5 ZnO TFT通道崩潰電壓特性圖..........................................32
圖3.6 ZnO TFT C-V曲線圖......................................................... 33
圖3.7 ZnO TFT SiD-Frequency特性圖........................................... 34
圖3.8 ZnO TFT SiD/ID2-Frequency特性圖.........................................35
圖3.9 ZnO TFT Log SiD/ID2- (VGS - Vth)特性圖....................................36
圖3.10 ZnO TFT和ZnZrO TFT霍格常數比較圖.........................................37
圖4.1 EDX材料元素含量圖(ZrO2 : ZnO = 80W : 150W) ...................................39
圖4.2 EDX材料元素含量圖(ZrO2 : ZnO = 100W : 150W) ................................40
圖4.3 ZnZrO薄膜XPS O 1s軌域量測圖....................................41
圖4.4 ZnZrO薄膜XPS Zn 2p軌域量測圖.......................................42
圖4.5 隨著退火溫度增加Binding Energy 增加的能帶示意圖...........................43
圖4.6 隨著退火溫度增加Zn2p3/2 Binding Energy減少的能帶示意圖............. 43
圖4.7 ZnZrO薄膜XRD量測圖...................................... 44
圖4.8 ZnZrO薄膜未退火AFM 2D量測圖.............................................45
圖4.9 ZnZrO薄膜未退火AFM 3D量測圖....................................45
圖4.10 ZnZrO薄膜100℃退火AFM 2D量測圖.................................................. 46
圖4.11 ZnZrO薄膜100℃退火AFM 3D量測圖.................................................. 46
圖4.12 ZnZrO薄膜300℃退火AFM 2D量測圖...................................................47
圖4.13 ZnZrO薄膜300℃退火AFM 3D量測圖...................................................47
圖4.14 ZnZrO薄膜500℃退火AFM 2D量測圖...................................................48
圖4.15 ZnZrO薄膜500℃退火AFM 3D量測圖...................................................48
圖4.16 ZnZrO薄膜700℃退火AFM 2D量測圖...................................................49
圖4.17 ZnZrO薄膜700℃退火AFM 3D量測圖...................................................49
圖4.18 ZnZrO薄膜在不同溫度下霍爾效應量測圖...............................................51
圖4.19 ZnO不同溫度下透光度量測圖..............................................53
圖4.20 ZnZrO不同溫度下透光度量測圖...............................53
圖4.21 ZnO不同溫度下的能隙圖......................................... 54
圖4.22 ZnZrO不同溫度下的能隙圖...................................... 55
圖5.1 Gd2O3/ZnZrO SIMS量測.................................................57
圖5.2 ZnZrO TFT IDS-VDS特性曲線圖...........................................58
圖5.3 ZnZrO TFT輸出的IDS-VGS-gm 特性曲線圖............................. 59
圖5.4 ZnZrO TFT Log IDS特性曲線圖........................................60
圖5.5 ZnZrO通道的崩潰電壓曲線圖......................................61
圖5.6 ZnZrO的C-V曲線圖..........................................................62
圖5.7 ZnZrO TFT SiD-Frequency特性圖.........................................63
圖5.8 ZnZrO TFT SiD/iD2-Frequency特性圖...................................64
圖5.9 ZnZrO TFT Log SiD/iD2-(VGS - Vth)特性圖..............................65
圖5.10 ZnZrO TFT IDS-VDS特性曲線圖........................................67
圖5.11 ZnZrO TFT輸出的IDS-VGS-gm 特性曲線圖.............................................68
圖5.12 ZnZrO TFT Log IDS特性曲線圖.......................................68
圖5.13 ZnZrO的C-V曲線圖..........................................................70
圖5.14 ZnZrO的C-V曲線圖..............................................................71
圖5.15 ZnZrO TFT SiD/ID2-Frequency特性圖........................................72
圖5.16 ZnZrO TFT Log SiD/ID2-(VGS - Vth)特性圖..............................73
圖5.17 不同TFT霍格常數比較圖.......................................74
圖5.18 PBS 3000s的ZnO TFT I-V特性圖...................................75
圖5.19 PBS 3000s的ZnZrO TFT I-V特性圖........................76
圖5.20 經由stress 3000s後ZnO TFT I-V回覆狀態特性圖.................................. 77
圖5.21 經由stress 3000s後ZnZrO TFT I-V回覆狀態特性圖.............................. 77

表目錄
表1.1 矽與金屬氧化物優缺點..................................................................................4
表4.1 ZrO2摻雜ZnO EDX含量分析(ZrO2 : ZnO = 80W : 150W) ......................39
表4.2 ZrO2摻雜ZnO EDX含量分析(ZrO2 : ZnO = 100W : 150W) ....................40
表4.3 ZnZrO各薄膜溫度下的表面粗糙度..................50
表4.4 ZnO不同退火溫度下的能隙.............................55
表4.5 ZnZrO不同退火溫度下的能隙.....................................55
表5.1 ZnZrO TFT和ZnO TFT電特性比較....................................60
表5.2 ZnZrO Ti/Au TFT和ZnZrO Cr/Al TFT電特性比較...................................69

[1] Y. Kuo, “Thin Film Transistors, Materials and Processes, 1: Amorphous Silicon Thin Film Transistors,”Boston: Kluwer Academic Publishers, 2004.
[2] Y. Kuo, “Thin Film Transistors, Materials and Processes, 2: Polycrystalline Silicon Thin Film Transistors,”Boston Kluwer Academic Publishers, 2004.
[3] Takashi Hirao, Mamoru Furuta, Takahiro Hiramatsu, Tokiyoshi Matsuda, Chaoyang Li, Hiroshi Furuta, Hitoshi Hokari, Motohiko Yoshida, Hiromitsu Ishii, and Masayuki Kakegawa, “Bottom-Gate Zinc Oxide Thin-Film Transistors (ZnO TFTs) for AM-LCDs,” IEEE Transactions on Electron Devices, vol. 55, no. 11, 2006.
[4] John f. Wager and Randy Hoffman, “Amorphous oxide semiconductors promise to make flat-panel displays faster and sharper than today’s silicon standby,” IEEE Spectrum, pp. 43-56, 2011.
[5] Mutsumi Kimura, “Features and applications of various TFTs - Si based matured TFTs and oxide semiconductor based transparent TFTs -,” IEEE Conference publications, pp. 557-558, 2011.
[6] Jae Kyeong Jeong, Jong Han Jeong, Hui Won Yang, Jin-Seong Park, Yeon-Gon Mo, “High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel,” Appl. Phys. Lett, vol. 91, pp. 113505, 2007.
[7] Hau-Yuan Huang, Shui-Jinn Wang, Chien-Hung Wu, Chen-Kuo Chiang, Je-Yi Su, “Performance tuning of InGaZnO thin-film transistors with a SnInGaZnO electron barrier layer,” Appl. Phys. Lett, vol. 102, pp. 092108, 2013.
[8] Kazushige Takechi, Mitsuru Nakata, Toshimasa Eguchi, Hirotaka Yamaguchi, Setsuo Kaneko, “Comparison of Ultraviolet Photo-Field Effects between Hydrogenated Amorphous Silicon and Amorphous InGaZnO4 Thin-Film Transistors,” Japanese Journal of Applied Physics, vol. 48, pp. 010203, 2009.
[9] Jeung Sun Ahn and Kwang Bae Lee, “High-performance Semitransparent a-InGaZnO4 Thin-film Transistors Using Thin Al Electrodes,” Journal of the Korean Physical Society, Vol. 57, No. 5, pp. 1244-1247,2010.
[10] Kyung Park, Ju-Yun Choi, Hoo-Jeong Lee, Jang-Yeon Kwon, Hyoungsub Kim, “Thin Film Transistor Using Amorphous InGaZnO Films as Both Channel and Source/Drain Electrodes,” Japanese Journal of Applied Physics, Vol. 50, pp. 096504, 2011.
[11] 姜 彥 如, “有機薄膜電晶體材料二噻吩蒽[3,2-b:2',3'-d]噻吩衍生物之開發”, 碩士論文,國立中央大學化學研究所,民國97年.
[12] Chang Jung Kim, Donghun Kang, Ihun Song, Jae Chul Park, Hyuck Lim, Sunil Kim,Eunha Lee, Ranju Chung, Jae Cheol Lee, Youngsoo Park, “Highly Stable Ga2O3-In2O3-ZnO TFT for Active-Matrix Organic Light-Emitting Diode Display Application,” IEEE Conference publications, pp.1-4, 2006.
[13] Wei-Jing Wu, Lei Zhou, Miao Xu, Li-Rong Zhang, Ruo-He Yao, and Jun-Biao Peng, “An AC Driving Pixel Circuit Compensating for TFTs Threshold-Voltage Shift and OLED Degradation for AMOLED,” IEEE Journal of Display Technology, pp.1-5, 2013.
[14] Jang Yeon Kwon, Kyoung Seok Son, Ji Sim Jung, Tae Sang Kim, Myung Kwan Ryu, Kyung Bae Park, Byung Wook Yoo, Jung Woo Kim, Young Gu Lee, Kee Chan Park, Sang Yoon Lee, and Jong Min Kim,“Bottom-Gate Gallium Indium Zinc Oxide Thin-Film Transistor Array for High-Resolution AMOLED Display,” IEEE Electron Devices Letters, vol. 29, pp. 1309-1311, 2008.
[15] Jae Kyeong Jeong, Yeon-Gon Mo, Hye Dong Kim, and Ho Kyoon Chung, “The current status and issue of oxide TFT for large-size AMOLED applications,” IEEE Conference publications, pp. 63-64, 2008.
[16] 黃子洋, “氧化鋅鎵薄膜透明電晶體研製,” 碩士論文,國立雲林科技大學光電工程研究所,民國99年.
[17] 王木俊,劉傳璽, “薄膜電晶體液晶顯示器-原理與實務-,” 新文京開發出版股份有限公司,民國九十七年.
[18] Junya NISHII, Faruque M. HOSSAIN, Shingo TAKAGI, Tetsuya AITA, Koji SAIKUSA, Yuji OHMAKI, Isao OHKUBO, Shuya KISHIMOTO, Ak ira OHTOMO, Tomoteru FUKUMURA, Fumihiro MATSUKURA, Yuzo OHNO, Hideomi KOINUMA, Hideo OHNO, Masashi KAWASAKI, “High Mobility Thin Film Transistors with Transparent ZnO Channels,” Japanese Journal of Applied Physics, Vol. 42, pp. 347– 349, 2003.
[19] Kuo-Feng Lin, Hsin-Ming Cheng, Hsu-Cheng Hsu, Li-Jiaun Lin , Wen-Feng Hsieh, “Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method,” Chemical Physics Letters, Vol. 409, pp. 208-211, 2005.
[20] R. L. Hoffman, B. J. Norris, J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett , vol. 82, no. 5, 2003.
[21] 李政哲, “利用雙閘極氧化銦鎵鋅薄膜電晶體實現主動式觸控偵測電路之研究,” 碩士論文,國立交通大學顯示科技研究所,民國100年.
[22] 范 凱 雄, “氧化鋯鋅溶凝膠薄膜之製備及其在薄膜電晶體之應用研究,” 碩士論文,逢甲大學材料科學工程所,民國九十六年.
[23] 陳進來,劉傳璽, “半導體元件物理與製程理論與實務,” 五南圖書出版公司,民國100年.
[24] 楊誌欽, 陳楷錫, 林宗義, 吳秉宸, “應用氧化鋅鈀材成長氮摻雜感測材料之研製,” 國立高雄海洋科技大學學報 第二十四期.
[25] Tae Sung Kang, Ja Hyun Koo, Tae Yoon Kim, and Jin Pyo Hong, “Electrical and Structural Analyses of Solution-Processed Li-Doped ZnO Thin Film Transistors Exposed to Ambient Conditions,” Applied Physics Express, vol. 6, pp. 011101, 2013.
[26] Hirotoshi Sato, Tadatsugu Minami, Shinzo Takata, “Highly transparent and conductive group IV impuritydoped ZnO thin films prepared by radio frequency magnetron sputtering,” J. Vac. Sci. Technol. A, vol. 11, pp. 2975, 1993.
[27] Bong Seob Yang, Myung Soo Huh, Seungha Oh, Ung Soo Lee, Yoon Jang Kim, Myeong Sook Oh, Jae Kyeong Jeong, Cheol Seong Hwang, Hyeong Joon Kim1, “Role of ZrO2 incorporation in the suppression of negative bias illumination induced instability in Zn–Sn–O thin film transistors,” Appl. Phys. Lett , vol. 98, pp. 122110, 2011.
[28] Woong-Sun Kim, Yeon-Keon Moon, Kyung-Taek Kim, Sae-Young Shin, Byung Du Ahn, Je-Hun Lee, Jong-Wan Park, “Improvement in the negative bias temperature stability of ZnO based thin film transistors by Hf and Sn doping,” Thin Solid Films, vol.519, pp. 6849-6852, 2011.
[29] Ming-Tsong Wang, Tsung-Hong Wang, and Joseph Ya-min Lee, “Electrical Conduction Mechanism in Metal-ZrO2-Silicon Capacitor Structures,” Journal of The Electrochemical Society, vol.152, pp. 182-185, 2005.
[30] S. B. Qadri, H. Kim, J. S. Horwitz, and D. B. Chrisey, “Transparent conducting films of ZnO–ZrO2: Structure and properties,” J. Appl. Phys, vol.88, pp. 6564, 2000.
[31] Ya-Lan Chiou and Ching-Ting Lee, “Band Alignment and Performance Improvement Mechanisms of Chlorine-Treated ZnO-Gate AlGaN/GaN Metal–Oxide–Semiconductor High-Electron Mobility Transistors,” IEEE Transactions on Electron Devices, Vol. 58, no. 11, 2011.
[32] J. Robertson and B. Falabretti, “Band offsets of high K gate oxides on III-V semiconductors,” J. Appl. Phys, Vol. 100, pp. 014111, 2006.
[33] M. Hack, J. G. Shaw, P. G. LeComber, M. Willums, “Numerical simularions of Amorphours and polycrystalline silicon Thin-Film Transistor,” Japanese Journal of Applied Physics, Vol. 29, pp. 2260-2262, 1990.
[34] Yang Xiao-tian, Zhu Hui-chao, Gao Wen-tao, Jin Hu, Qi Xiao-wei, Gao Bo, Dong Xiu-ru, Fu Guo-zhu, Jing Hai, Wang chao, Chang Yu-chun “The Fabrication and study of ZnO-based Thin Film Transistors,” Chinese Journal of Electron Devices, Vol. 31, no. 1, 2008.
[35] 李 天 鈞, “自我對準設計之高效能雙通道薄膜電晶體,” 碩士論文,逢甲大學電子工程所,民國九十九年.
[36] Jong-Ho Lee, Hyuck-In Kwon, Hyungcheol Shin, Byung-Gook Park, and Young June Park, “Electrical Instabilities and Low-Frequency Noise in InGaZnO Thin Film Transistors,” IEEE Conference publications, pp.1-7, 2010.
[37] Jae Chul Park, Sang Wook Kim, Chang Jung Kim, Sungchul Kim, Dae Hwan Kim, “Low-frequency noise in amorphous indium gallium zinc oxide thin film transistors from subthreshold to saturation,” Appl. Phys. Lett, Vol. 97, pp. 122104, 2010.
[38] Jeong-Min Lee, Woo-Seok Cheong, Chi-Sun Hwang, In-Tak Cho,
Hyuck-In Kwon, Jong-Ho Lee, “Low-Frequency Noise in Amorphous Indium Gallium Zinc-Oxide Thin Film Transistors,” IEEE Electron Device Letters, Vol. 30, no. 5, 2009.
[39] Ming-Tsong Wang, et al. “Electrical conduction mechanism in high-dielectric-constant ZrO2 thin films,” Microelectronics Reliability, Vol. 45, pp. 969-972, 2004.
[40] Fu-Chien Chiu, Zhi-Hong Lin, Che-Wei Chang, Chen-Chih Wang, Kun-Fu Chuang, “Electron conduction mechanism and band diagram of sputter-deposited Al/ZrO2/Si structure,” J. Appl. Phys, Vol. 97, pp. 034506, 2005.
[41] Maoshui Lv, Xianwu Xiu, Zhiyong Pang, Ying Dai, Lina Ye, Chuanfu Cheng, Shenghao Han, “Structural, electrical and optical properties of zirconium-doped zinc oxide films prepared by radio frequency magnetron sputtering,” Thin Solid Films, Vol. 516, pp. 2017-2021, 2008.
[42] Kariyadan Remashan, Yong-Seok Choi, Se-Koo Kang, Jeong-Woon Bae, Geun-Young Yeom, Seong-Ju Park, Jae-Hyung Jang, “Enhancement-Mode Metal Organic Chemical Vapor Deposition-Grown ZnO Thin-Film Transistors on Glass Substrates Using N2O Plasma Treatment,” Japanese Journal of Applied Physics, Vol. 49, 2010.
[43] Woojin Lee, Sungjin Shin, Dae-Ryong Jung, Jongmin Kim, Changwoo Nahm, Taeho Moon, Byungwoo Park, “Investigation of electronic and optical properties in Al_Ga codoped ZnO thin films,” Current Applied Physics, Vol. 12, pp. 628-631 2012.
[44] Yumin Kim, Woojin Lee, Dae-Ryong Jung, Jongmin Kim, Seunghoon Nam, “Optical and electronic properties of post-annealed ZnO:Al thin films,” Appl. Phys. Lett, Vol.96, pp. 171902, 2012.
[45] Tahar Touam, Lamia Znaidi, Dominique Vrel, Iva Ninova-Kuznetsova, Ovidiu Brinza, Alexis Fischer, Azzedine Boudrioua,
“Low Loss Sol-Gel TiO2 Thin Films for Waveguiding Applications,” Coatings, Vol.3, pp. 49-58, 2013.
[46] M. Grätzel, “Heterogeneous photochemical electron transfer,” CRC Press, pp.91, 1989.
[47] Pedro Barquinha, Anna M. Vilà, Gonçalo Gonçalves, Luís Pereira,
Rodrigo Martins, Joan R. Morante, and Elvira Fortunato, “Gallium–Indium–Zinc-Oxide-Based Thin-Film Transistors: Influence of the Source/Drain Material,” Transactions on Electron Devices, Vol.55, no. 4, 2008.
[48] Sung-Hwan Choi and Min-Koo Han, “Effect of channel widths on negative shift of threshold voltage, including stress-induced hump phenomenon in InGaZnO thin-film transistors under high-gate and drain bias stress,” Appl. Phys. Lett , vol. 100, pp. 043503, 2012.
[49] Satoshi Urakawa, Shigekazu Tomai, Yoshihiro Ueoka, Haruka Yamazaki, Masashi Kasami, “Thermal analysis of amorphous oxide thin-film transistor degraded by combination of joule heating and hot carrier effect,” Appl. Phys. Lett, vol. 102, pp. 053506, 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top