跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/02 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宗哲
研究生(外文):Chung-Che Lee
論文名稱:金屬複合奈米粒子於電磁波吸收之研究
論文名稱(外文):Metallic Composite Nanoparticles for Electromagnetic Wave Absorption
指導教授:陳東煌陳東煌引用關係
指導教授(外文):Dong-Hwang Chen
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:167
中文關鍵詞:電磁波金屬複合奈米粒子
外文關鍵詞:Metallic Composite NanoparticlesElectromagnetic Wave
相關次數:
  • 被引用被引用:10
  • 點閱點閱:695
  • 評分評分:
  • 下載下載:159
  • 收藏至我的研究室書目清單書目收藏:1
本論文以多元醇法製備單分散之Ni、Ag、Co等金屬及其核殼型與合金型複合奈米粒子,並將其分散於高分子膠合劑中,探討其電磁波吸收特性。
關於金屬奈米粒子之製備,係於乙二醇溶液中,分別以聯氨與聚乙醯胺(PEI)為還原劑與保護劑,製得Ni、Ag、Co、Ni@Ag、Ni3Ag1、Ni1Ag1、Ni1Ag3、Co3Ag1、Co1Ag1、Co1Ag3、Co3Ni1、Co1Ni1、Co1Ni3、及CoNiAg等14種產品。其粒徑小且具單分散性,皆為面心立方體結構。且除Ag外,皆近乎超順磁。
關於電磁波吸收特性之研究,主要探討上述金屬奈米粒子在2-18GHz與18-40GHz兩個頻率範圍內反射損失及相關的介電係數與導磁係數。結果發現,Ag奈米粒子在兩個頻率範圍內皆無明顯的反射損失,而Co及Ni奈米粒子則僅分別於22.3 與31.8GHz有一最大反射損失。然而,Ni@Ag奈米粒子除了在31.5GHz處有一最大反射損失外,在10.8GHz處出現另一新的反射損失,展現雙頻電磁波吸收特性,推測可能是因核-殼界面在電磁場下產生之極化滯緩現象引發介電損失所致。又Ni1Ag1奈米粒子與Ni奈米粒子相似,僅有單頻吸收,但吸收頻率由31.8 GHz 位移到9.4GHz。Ni3Ag1與Ni1Ag3奈米粒子則與Ni@Ag奈米粒子相似,皆展現雙頻電磁波吸收特性。Ni3Ag1奈米粒子之最大反射損失於7.1與36.5GHz處出現,而Ni1Ag3奈米粒子則於7.7與30.3GHz處發生。推測NiAg合金奈米粒子中之Ni與Ag原子並未均勻分佈,可能有富鎳或富銀之微相分散於粒子內部,形成類似核殼型的微結構。因此在電磁場下,該微相結構之晶界會因極化滯緩現象而產生介電損失,故呈現雙頻電磁波吸收之特性。至於Ni1Ag1奈米粒子,可能因兩成份之比例相近,粒子內部可能較少有富鎳或富銀之微相產生,故僅有單頻吸收特性。
此外,CoAg與CoNi奈米粒子皆呈現單頻電磁波吸收特性,但吸收頻率則隨組成改變而不同。最大反射損失發生之頻率,Co3Ag1、Co1Ag1、Co1Ag3 、Co3Ni1、Co1Ni1、與Co1Ni3分別為8.7、16.2、12.1、12.1、15.8、與15.2GHz。推測CoAg與CoNi奈米粒子內部可能具有較佳的組成均勻性,故未如Ni1Ag3與Ni3Ag1奈米粒子般展現雙頻電磁波吸收特性。值得注意的,CoNiAg奈米粒子亦於12.2與30.7GHz呈現雙頻電磁波吸收之特性,顯示當Ni與Ag同時存在時,有較大的機會出現雙頻電磁波吸收現象。
據此可知,金屬奈米粒子之電磁波吸收頻率可藉由金屬種類及其合金組成的改變或核殼結構的建立加以調整,甚至可因微相結構的存在而展現雙頻吸收的特性。
This dissertation concerns the polyol synthesis of monodisperse Ni, Ag, Co, and their core-shell and alloy nanoparticles. Also, their electromagnetic (EM) wave absorption properties while embedded in a polymer matrix were studied.
For the synthesis of metal nanoparticles, they were synthesized in ethylene glycol with hydrazine and PEI as the reducing agent and protective agent, respectively. Fourteen kinds of metal nanoparticles were obtained, including Ni, Ag, Co, Ni@Ag, Ni3Ag1, Ni1Ag1, Ni1Ag3, Co3Ag1, Co1Ag1, Co1Ag3, Co3Ni1, Co1Ni1, Co1Ni3, and CoNiAg. They were all very small and monodisperse with a face-centered cubic (fcc) structure. Except Ag, they were nearly superparamagnetic.
For the study on the EM wave absorption properties, the reflection loss (RL) and the corresponding permittivity and permeability of the above metal nanoparticles in the frequency ranges of 2-18 GHz and 18-40 GHz were investigated. It was found that no significant EM wave absorption was observed for Ag nanoparticles in two frequency ranges examined. Co and Ni nanoparticles showed the maximum RL at 22.3 and 31.8 GHz, respectively. However, Ni@Ag nanoparticles not only remained a significant absorption at 31.5 GHz but also showed an additional absorption at 10.8 GHz, exhibiting a dual-frequency EM wave absorption property. The additional absorption of Ni@Ag nanoparticles at 10.8 GHz might be due to the lags of polarization between the core/shell interfaces as the frequency was varied, which contributed to the dielectric loss. Furthermore, both Ni3Ag1 and Ni1Ag3 nanoparticles exhibited a dual-frequency EM wave absorption property with the maximum RL at 7.1 and 36.5 GHz for Ni3Ag1 and 7.7 and 30.3 GHz for Ni1Ag3. It was suggested that the distribution of Ni and Ag atoms in the bulk phase of Ni3Ag1 and Ni1Ag3 nanoparticles might be inhomogeneous. Ni- and Ag-rich micro-domains might be formed, leading to the appearance of the second absorption due to the lags of polarization at the interfaces as the frequency was varied. As for the Ni1Ag1 nanoparticles, a single-frequency EM wave absorption was observed, probably due to the absence of Ni- and Ag-rich domains when Ag and Ni contents were similar.
In addition, CoAg and CoNi nanoparticles all exhibited a single-frequency EM wave absorption. The absorption frequency varied with the composition. The frequencies where the maximum RL occurred were 8.7, 16.2, 12.1, 12.1, 15.8, and 15.2 GHz for Co3Ag1, Co1Ag1, Co1Ag3 , Co3Ni1, Co1Ni1, and Co1Ni3, respectively. It was suggested that the compositions of CoAg and CoNi nanoparticles in the bulk phase were homogeneous. It was noted that CoNiAg nanoparticles also exhibited a dual-frequency EM wave absorption property at 12.2 and 30.7 GHz, revealing the simultaneous presence of Ni and Ag easily led to the dual-frequency EM wave absorption.
Accordingly, it could be concluded that the EM wave absorption frequency of metal nanoparticles could be tuned by changing the kind of metal nanoparticles and their alloy composition or core-shell structure. The presence of micro-phases might lead to the dual-frequency EM wave absorption.
中文摘要……………………………………………………………. I
英文摘要……………………………………………………………. III
誌謝…………………………………………………………………. V
總目錄………………………………………………………………. VI
表目錄………………………………………………………………. IX
圖目錄………………………………………………………………. X
符號…………………………………………………………………. XV

第一章 緒論………………………………………………………... 1
1.1 奈米材料與奈米技術………………………………………….. 1
1.1.1 奈米材料之定義與範疇………………………………….. 1
1.1.2 奈米材料之特性…………………………………………... 1
1.1.3 奈米材料之應用領域……………………………………... 11
1.1.4 奈米材料之製備…………………………………………... 13
1.1.4.1 奈米材料之製法簡介………………………………… 13
1.1.4.2 複合奈米粒子之製備………………………………… 17
1.2 電磁波抑制材料……………………………………………….. 23
1.2.1 前言………………………………………………………... 23
1.2.2 能量場的特性……………………………………………... 24
1.2.3 電磁波干擾/放射頻率干擾之簡介………………………. 27
1.2.3.1 產生來源與分類……………………………………… 27
1.2.3.2 電磁波干擾的管理法規……………………………… 32
1.2.4 遮蔽材與吸收材之特性…………………………………... 34
1.3 電磁波吸收材之製作與設計………………………………….. 39
1.4 導電性高分子塑膠之製備技術……………………………….. 41
1.5 研究動機……………………………………………………….. 42

第二章 理論部分…………………………………………………... 44
2.1 電磁波干擾/放射頻率干擾之遮蔽理論……………………… 44
2.2 微波吸收材之吸收原理……………………………………….. 51
2.3 微波反射損失之量測理論…………………………………….. 54
2.4 多元醇法……………………………………………………….. 57

第三章 實驗部分…………………………………………………... 59
3.1 藥品、儀器與材料…………………………………………….. 59
3.1.1 藥品………………………………………………………... 59
3.1.2 儀器………………………………………………………... 60
3.1.3 材料………………………………………………………... 61
3.2 多元醇法製備Ni@Ag複合奈米粒子之方法………………… 62
3.2.1 低濃度Ni@Ag複合奈米粒子……………………………. 62
3.2.2 高濃度Ni@Ag複合奈米粒子……………………………. 62
3.3 多元醇法製備合金奈米粒子之方法………………………….. 63
3.4 製備金屬奈米粒子複合膜之方法…………………………….. 65
3.5 特性分析……………………………………………………….. 66

第四章 結果與討論………………………………………………... 69
4.1 Ni@Ag奈米粒子之合成與電磁波吸收特性…………………. 69
4.1.1 鎳奈米粒子之基本物性…………………………………... 69
4.1.2 Ni@Ag奈米粒子之基本物性…………………………….. 71
4.1.3 Ni@Ag奈米粒子複合膜之電磁波吸收特性…………….. 86
4.2 NiAg合金奈米粒子之合成與電磁波吸收特性………………. 93
4.2.1 NiAg合金奈米粒子之基本物性………………………….. 93
4.2.2 NiAg奈米粒子複合膜之電磁波吸收特性………………. 101
4.3 CoAg合金奈米粒子之合成與電磁波吸收特性……………… 110
4.3.1 CoAg合金奈米粒子之基本物性…………………………. 110
4.3.2 CoAg奈米粒子複合膜之電磁波吸收特性………………. 118
4.4 CoNi合金奈米粒子之合成與電磁波吸收特性………………. 127
4.4.1 CoNi合金奈米粒子之基本物性………………………….. 127
4.4.2 CoNi奈米粒子複合膜之電磁波吸收特性………………. 134
4.5 CoNiAg合金奈米粒子之合成與電磁波吸收特性…………… 142
4.5.1 CoNiAg合金奈米粒子之基本物性………………………. 142
4.5.2 CoNiAg奈米粒子複合膜之電磁波吸收特性……………. 146

第五章 結論………………………………………………………... 152

參考文獻……………………………………………………………. 156
[1]呂世源, “奈米新世界”, 科學發展月刊, 359, 4 (2002).
[2]林景正, 賴宏仁, “奈米材料技術與發展趨勢”, 工業材料, 153, 95 (1999).
[3]工研院工業材料研究所, 2001材料奈米技術專刊, 臺北: 經濟部技術處 (2001).
[4]蘇品書(編譯), 超微粒子材料技術, 臺南: 復漢出版社 (1989).
[5]G. Schmid, Nanoscale Materials in Chemistry, New York: Wiley (2001).
[6]朱屯, 王福明, 王習東, 奈米材料技術, 臺北: 五南書局 (2003).
[7]張立德, 牟季美, 奈米材料和奈米結構, 臺中: 滄海書局 (2002).
[8]馬振基, 奈米材料科技—原理與應用, 臺北: 全華書局 (2004).
[9]X. H. Zhong, R. G. Xie, Y. Zhang, T. Basche, and W. Knoll, Chem. Mater., 17, 4038 (2005).
[10]Christopher Loo, Alex Lin, Leon Hirsch, M. H. Lee, Jennifer Barton, Naomi Halas, Jennifer West, and Rebekah Drezek, Technol. Cancer Res. Treat., 3, 33 (2004).
[11]S. N. Alamri and A. W. Brinkman, J. Phys. D: Appl. Phys., 33, L1 (2000).
[12]X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, Nat. Biotechnol., 22, 969 (2004).
[13]S. K. Haram, B. M. Quinn, and A. J. Bard, J. Am. Chem. Soc., 123, 8860 (2001).
[14]S. G. Hickey, D. J. Riley, and E. J. Tull, J. Phys. Chem. B, 104, 7623 (2000).
[15]W. J. Parak, D. Gerion, D. Zanchet, A. S. Woerz, T. Pellegrino, C. Micheel, S. C. Williams, M. Seitz, R. E. Bruehl, Z. Bryant, C. Bustamante, C. R. Bertozzi, and A. P. Alivisatos, Chem. Mater., 14, 2113 (2002).
[16]T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, Phys. Rev. B, 42, 8548 (1990).
[17]D. L. Pelecky and R. D. Rieke, Chem. Mater., 8, 1770 (1996).
[18]尹邦耀, 奈米時代, 臺北: 五南書局 (2002).
[19]吳國卿, 董玉蘭, “奈米粒子材料的觸媒性質”, 化工資訊月刊, 13(5), 42 (1999).
[20]莊萬發(編譯), 超微粒子理論應用, 臺南: 復漢出版社 (1995).
[21]史宗淮, “微粉製程技術簡介”, 化工, 42(6), 28 (1995).
[22]Z. Zhang, B. Zhao, and L. Hu, J. Solid State Chem., 121, 105 (1996).
[23]T. Teranishi, K. Nakata, M. Miyake, and N. Toshima, Chem. Lett., 4, 277 (1996).
[24]X. Li, G. Lu, and S. Li, J. Mater. Sci. Lett., 15, 397 (1996).
[25]林鴻明, “奈米材料未來的發展趨勢”, 科技發展政策報導, 9, 648 (2002).
[26]E. Graffet, M. Tchikart, O. Elkedim, and R. Rahouadj, Mater. Charact., 36, 185 (1996).
[27]A. Amulyavichus, A. Daugvila, R. Davidonis, and C. Sipavichus, Fiz. Met. Metalloved., 85, 111 (1998).
[28]J. R. Balckborrow and D. Young, Metal Vapor Synthesis, New York (1979).
[29]張志焜, 崔作林, 納米技術與納米材料, 北京: 國防工業 (2000).
[30]T. Sugimoto, Adv. Colloid Interface Sci., 28, 65 (1987).
[31]S. Ayyappan, R. S. Gopalan, G. N. Subbanna, and C. N. R. Rao, J. Mater. Res., 12, 398 (1997).
[32]J. Lee, T. Isobe, and M. Senna, J. Colloid Interface Sci., 177, 490 (1996).
[33]N. Ishizuki, N. Torigoe, K. Esumi, and K. Meguro, Colloids Surf., 55, 15 (1991).
[34]K. Osseo-Asare and F. J. Arriagada, Ceram. Trans., 12, 3 (1990).
[35]M. Meyer, C. Wallberg, K. Kurihara, and J. H. Fendler, J. Chem. Soc., 2, 90 (1984).
[36]J. H. Fendler, Chem. Rev., 87, 877 (1987).
[37]A. Kitahara, K. Kazuhiko, and K. Kijiro, J. Colloid Interface Sci., 122, 78 (1988).
[38]K. Osseo-Asare and F. J. Arriagada, Colloids Surf., 50, 321 (1990).
[39]K. V. Sarathy, G. U. Kulkarni, and C. N. R. Rao, Chem. Commun., 6, 537 (1997).
[40]T. Yonezawa, T. Tominaga, and D. Richard, J. Chem. Soc. Dalton Trans., 5, 783 (1996).
[41]M. T. Reetz, M. Winter, and B. Tesche, Chem. Commun., 6, 535 (1997).
[42]郭清癸, 黃俊傑, 牟中原, “金屬奈米粒子的製造”, 物理雙月刊, 23(6), 614 (2001).
[43]Y. Zhu, Y. Qian, X. Li, and M. Zhang, Chem. Commun., 12, 1081 (1997).
[44]K. Esumi, K. Matsuhisa, and K. Torigoe, Langmuir, 11, 3285 (1995).
[45]Y. Mizukoshi, K. Okitsu, Y. Maeda, T. A. Yamamoto, R. Oshima, and Y. Nagata, J. Phys. Chem. B, 101, 7033 (1997).
[46]F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, J. Phys. Chem. B, 105, 5114 (2001).
[47]F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert, and K. Tekaia-Elhsissen, Nanostructured Mater., 11, 1277 (1999).
[48]D. H. Chen and C. H. Hsieh, J. Mater. Chem., 12, 2412 (2002).
[49]Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, J. Phys. Chem. B, 101, 6661 (1997).
[50]陳東煌, “複合奈米粒子”, 化工資訊與商情, 3, 58 (2003).
[51]陳東煌, “複合奈米粒子的製備與應用”, 化工技術, 120, 180 (2003).
[52]W. Schärtl, Adv. Mater., 12, 1899 (2000).
[53]F. Caruso, Adv. Mater., 13, 11 (2001).
[54]J. J. Schneider, Adv. Mater., 13, 529 (2001).
[55]C. J. Zhong and M. M. Maye, Adv. Mater., 13, 1507 (2001).
[56]張立德, 納米材料, 北京: 化學工業出版社 (2000).
[57]張立德, 牟季美, 納米材料和納米結構, 北京: 科學出版社 (2000).
[58]S. Chen and N. Li, J. Mater. Chem., 12, 1124 (2002).
[59]P. Audebert, S. Sadki, F. Miomandre, G. Lanneau, R. Frantz, and J. O. Durand, J. Mater. Chem., 12, 1099 (2002).
[60]E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, Phys. Rev. Lett., 89, 203002 (2002).
[61]劉雪寧, 楊治中, “納米複合材料的設計與應用”, 化學通報, 62, 99124 (1999).
[62]葉晨聖, “金屬奈米顆粒及其應用”, 化工資訊與商情, 7, 64 (2004).
[63]H. C. Chu, S. R. Sheen, C. T. Yeh, and T. P. Perng, J. Alloy. Compd., 322, 198 (2001).
[64]N. Toshima and Y. Wang, Langmuir, 10, 4574 (1994).
[65]N. Toshima and T. YoneZawa snaK. Asakura, J. Phys. Chem., 96, 9927 (1992).
[66]Y. Wang and N. Toshima, J. Phys. Chem. B, 101, 5301 (1997).
[67]J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma, and H. Komiyama, J. Appl. Phys., 73, 1043 (1993).
[68]J. B. Jackson and N. J. Halas, J. Phys. Chem. B, 105, 2743 (2001).
[69]S. K. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, Chem. Phys. Lett., 300, 524 (1999).
[70]S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett., 288, 243 (1998).
[71]S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, Langmuir, 14, 5396 (1998).
[72]H. Hofineister, P. T. Miclea, and W. Morke, Part. Part. Syst. Charact., 19, 359 (2002).
[73]K. Mauik, M. Mandal, N. Pradhan, and T. Pal, Nano Lett., 6, 319 (2001).
[74]K. H. Ng and R. M. Penner, J. Electro. Anal. Chem., 522, 86 (2002).
[75]J. H. Gwak, S. J. Chae, and M. Lee, Nanostructure Mater., 8, 1149 (1997).
[76]J. Lin, W. L. Zhou, A. Kumbhar, J. Wiemann, J. Y. Fang, E. E. Carpenter, and C. J. O'Connor, J. Solid State Chem., 159, 26 (2001).
[77]S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, J. Biomed. Materi. Res., 5, 293 (2002).
[78]D. H. Chen, J. P. Lin, S. H. Wu, and C. T. Wang, Chem. Lett., 32, 662 (2003).
[79]R. G. Freeman, M. B. Hommer, K. C. Grabar, M. A. Jackson, and M. J. Natan, J. Phys. Chem., 100, 718 (1996).
[80]N. Toshima and T. Yonezawa, New J. Chem., 22, 1179 (1998).
[81]S. Hamilton, New Electronics, 28 , 22 (1987).
[82]劉有台, “電磁遮蔽性紡織品之發展與應用”, 化工資訊月刊, 16(10), 66 (2002).
[83]王彙中, 馬振基, “EMI/RFI遮蔽用導電性高分子複合材料”, 塑膠資訊, 33, 1 (1999).
[84]N. V. Mandich, Plat. Surf. Finish., 81 , 60 (1994).
[85]J. J. Mason and Y. Zaka, T. I. Met. Finish., 64 , 110 (1986).
[86]D. M. Bigg, Polym. Eng. Sci., 17, 842 (1977).
[87]R. A. Crossman, Polym. Eng. Sci., 25, 507 (1985).
[88]K. Nakajima and K. Higuchi, Proceeding 52th Annual Conference IMA, 15, (1995).
[89]Y. J. Huang, B. H. Hu, I. Pinwill, W. Zhou, and D. M. R. Taplin, Mater. Manuf. Processes, 15, 97 (2000).
[90]K. Kimura, K. Nishi, M. Ishizuka, and S. Miyahars, The 6th Intersociety Conference on Thermal Phenomena, 35 (1998).

[91]L. W. Shacklette, N. F. Colaneri, V. G. Kulkarni, and B. Wessling, J. of Vinyl and Additive Technology, 14, 118 (1992).
[92]柯澤豪, PAN系碳纖維的電性與磁性分析與電磁波遮蔽之研究, 私立逢甲大學碩士論文 (2001).
[93]R. M. Gresham, Plating Surf. Finish., 2, 63 (1988).
[94]G. G. Bush, Electromagnetic Compatibility, 1994. Symposium Record. Compatibility in the Loop. IEEE International Symposium on, 333 (1994).
[95]W. Graf and E. F. Vance, IEEE Trans. Electromagn. Compat., 30, 289 (1988).
[96]L. Ferraris and W. Chang-Yu, IEEE International Symposium on Electromagnetic Compatibility. Proceeding (EMC), 86 (1997).
[97]陳柏宏(編譯), 電磁干擾與防止對策, 臺北: 文笙書局 (1996).
[98]E. F. Norman, Plast. Eng., 37, 29 (1981).
[99]卓盛鵬(編譯), EMC的基礎和實踐, 臺北: 全華書局, (1998).
[100]W. Duff, EMC International Conference on Electromognetic Compatibility, 10 (1988).
[101]http://www.quatek.com.tw/service/application/EMC/EMC.htm
[102]陳宏立, 常用之工業機箱散熱網孔之型式與尺寸對於EMI/EMC之效果與影響, 私立大同大學碩士論文 (2006).
[103]經濟部, “資訊電子產品外殼塑件防EMI技術”, 工業技術人才培訓計畫講義 (2001).
[104]黃振燦, “塑膠導電及電磁干擾之遮屏”, 塑膠資訊, 21, 51 (1998).
[105]盧敏彥, “導電塑膠應用—電磁干擾屏蔽”, 化工資訊月刊, 9, 15 (1998).
[106]http://www.epa.gov.tw/main/index.asp
[107]陳志源, 鐵微粒表面被覆奈米銀層之研究, 國立成功大學碩士論文 (2004).
[108]清水康敬, “電磁波干擾材料與電波吸收材料”, 日本工業材料, 44(9), 26 (1996).
[109]A. P. Hale, 1973 IEEE International Symposium on Electromagnetic Compatibility: Symposium Record, New York, (1973).
[110]沈永清, “導電性塑膠材料技術發展介紹”, 化工資訊月刊, 9, 6 (1998).
[111]財團法人工業研究院, 導電性高分子專題調查報告 (1998).
[112]陳燈桂, 電磁干授遮蔽性複合材料之研究, 國立台灣大學碩士論文 (1988).
[113]邱首凱, 塑膠複合材料電磁遮蔽效應之研究, 國立中山大學碩士論文 (2001).
[114]戴傳家, 雷射發收模組電磁遮蔽之研究, 國立中山大學碩士論文 (2002).
[115]X. C. Luo and D. D. L. Chung, Compos. Part B, 30, 227 (1999).
[116]D. D. L. Chung, Carbon, 39, 279 (2001).
[117]吳漢標, 陳翊民, “微波吸收材料性質分析與應用”, 工業材料, 128, 143 (1997).
[118]C. I. Chung and D.E. McClelland, Poly. Eng. Sci., 23, 101 (1983).
[119]C. I. Chung, E.M. Mount, III, and J.G. Watson, Poly. Eng. Sci., 22, 729 (1982).
[120]J. R. Liu, M. Itoh, and K. I. Machida, Appl. Phys. Lett., 88, 62503 (2006).
[121]X. F. Zhang, X. L. Dong, H. Huang, Y. Y. Liu, W. N. Wang, X. G. Zhu, B. Lv, and J. P. Lei, Appl. Phys. Lett., 89, 53115 (2006).
[122]R. B. Schulz, V. C. Plantz, and D. R. Brush, IEEE Trans. Electromagn. Compat., 30, 187 (1988).
[123]R. J. D. White, A Handbook Series on Electromagnetic Interference and Compativility, Gumantown Maryland: Don White Consultants, Inc. (1973).
[124]邢麗英等(編著), 隱身材料, 北京: 化學工業出版社 (2004).
[125]A. David and Belforte, Industrial laser materials processing, Paris : Innovation (1989).
[126]柯富升, 可微影電磁波屏蔽材料之開發與研究, 國立臺灣大學碩士論文 (2006).
[127]陳龍華, “如何屏蔽電磁干擾”, 無線電界, 57(6), 106 (1987).
[128]B Lax and K.T. Button, Microwave Ferrite and Ferrite Magnetics, New York: McGraw-H-ill (1962).
[129]D. Klement, J. Preissner, and V. Stein, IEEE Trans. Antennas Propag., 36, 228 (1988).
[130]S. Ayyappan, G. N. Subbanna, R. Srinvasa-Gopalan, and C. N. Rao, Solid State Ion., 84, 271 (1996).
[131]M. S. Hegde, D. Larcher, L. Dupont, B. Beaudoin, K. Tekaia-Elhsisen, and J. M. Trascon, Solid State Ion., 93, 33 (1997).
[132]C. Ducamp-Sanguesa, R. Herrera-Urbina, and M. Figlarz, J. Solid State Chem., 100, 272 (1992).
[133]P. Y. Silvert, R. Herera-Urbina, N. Duvauchelle, V. Vjayakrishnan, and K. Tekaia-Elhsissen, J. Mater. Chem., 6, 573 (1996).
[134]P. Y. Silvert, R. Herera-Urbina, and K. Tekaia-Elhsissen, J. Mater. Chem., 7, 293 (1997).
[135]P. Y. Silvert and K. Tekaia-Elhsissen, Solid State Ion., 82, 53 (1995).
[136]黃文雄等人, 儀器總覽材料分析儀器, 行政院國家科學委員會精密儀器發展中心出版 (1998).
[137]http://www.damaskosinc.com/index.htm
[138]S. H. Wu and D. H. Chen, J. Colloid Interface Sci., 259, 282 (2003).
[139]D. H. Chen and C. J. Chen, J. Mater. Chem., 12, 1557 (2002).
[140]M. Gaudry, J. Lermé, E. Cottancin, M. Pellarin, B. Prével, M. Treilleux, P. Mélinon, J. L.Rousset, and M. Broyer, Eur. Phys. J. D., 16, 201 (2001).
[141]H. Portales, L. Saviot, E. Duval, M. Gaudry, E. Cottancin, M. Pellarin, J. Lermé, and M. Broyer, Phys. Rev. B, 65, 165422 (2002).
[142]N. Sandhyarani, G. Skanth, Sheela Berchmans, V. Yegnaraman, and T. Pradeep, J. Colloid Interface Sci., 209, 154 (1999).
[143]David A. Hutt, Elaine Cooper, Graham J. Leggett, J. Phys. Chem. B, 102, 174 (1998).
[144]吳思翰, 金屬及金屬核殼型複合奈米粒子之製備, 國立成功大學博士論文 (2004).
[145]D. A.Van Leeuwen, L. M. Van Ruitenbeek, L. J. De Jongh, A. Ceriotti, G. Pacchioni, O. D. Häberlen, and N. Rösch, Phys. Rev. Lett., 73, 1432 (1994).
[146]V. B. Bregar, IEEE Trans. Magn., 40, 1679 (2004).
[147]J. H. Oh, K. S. Oh, C. G. Kim, and C. S. Hong, Compos. Part B, 35, 49 (2004).
[148]J. R. Liu, M. Itoh, T. Horikawa, E. Taguchi, H. Mori, and K. Machida, Appl. Phys. A, 82, 509 (2006).
[149]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett., 84, 4184 (2000).
[150]S. T. Chui and L. Hu, Phys. Rev. B, 65, 144407 (2002).
[151]T. Kasagi, T. Tsutaoka, and K. Hatakeyama, Appl. Phys. Lett., 88, 172502 (2006).
[152]J. Xu, T. Klassen, and R. S. Averback, J. Appl. Phys., 79, 3935 (1996).
[153]B. Y. Tsaur and M. Maenpaa, J. Appl. Phys., 52, 728 (1981).
[154]L. Nicolais and G. Carotenuto, Metal-Polymer Nanocomposites, New Jersey: Wiley (2005).
[155]Y. Deng, L. Zhao, B. Shen, L. Liu, and W. Hu, J. Appl. Phys., 100, 14304 (2006).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top