[1] B. Matthias, A. von Hippel, Domain Structure and Dielectric Response of Barium Titanate Single Crystals, Physical Review, 73 (1948) 1378-1384.
[2] T. Shimada, T. Kitamura, Multi-Physics Properties in Ferroelectric Nanowires and Related Structures from First-Principles, 2010.
[3] M. Grundmann, The Physics of Semiconductors, Graduate Texts in Physics, Springer Berlin Heidelberg, 2010.
[4] 呂正傑, 詹世雄, 鐵電記憶體簡介, 奈米通訊, 5 (1998).
[5] W.D.C. Jr., D.G. Rethwisch, Materials Science and Engineering: An Introduction John Wiley and Sons, 2009.
[6] S. Nayak, B. Sahoo, T.K. Chaki, D. Khastgir, Facile preparation of uniform barium titanate (BaTiO3) multipods with high permittivity: impedance and temperature dependent dielectric behavior, RSC Advances, 4 (2014) 1212-1224.
[7] W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to ceramics, John Wiley and Sons, New York.
[8] M. Qin, K. Yao, Y.C. Liang, High efficient photovoltaics in nanoscaled ferroelectric thin films, Applied Physics Letters, 93 (2008) .
[9] B. Jaffe, W.R. Cook Jr, H. Jaffe, Piezoelectric Ceramics, Academic Press, 1971.
[10] O. Muller, R. Roy, The Major Ternary Structural Families, Springer-Verlag, New York, 1974.
[11] C.G. Bergeron, S.H. Risbud, Introduction to Phase Equilibria in Ceramics, The American Ceramic Society Inc., Columbus, Ohio, 1984.
[12] W.-H. Lee, W.A. Groen, H. Schreinemacher, D. Hennings, Dysprosium Doped Dielectric Materials for Sintering in Reducing Atmospheres, Journal of Electroceramics, 5 (2000) 31-36.
[13] D.F.K. Hennings, Dielectric materials for sintering in reducing atmospheres, Journal of the European Ceramic Society, 21 (2001) 1637-1642.
[14] K.M. Nair, A.S. Bhlla, Advances in dielectric ceramic materials the American Ceramic Society, 88 (1998).
[15] 林麗娟, x光繞射原理及其應用, 工業材料, 1994.[16] A.S. Bhalla, R. Guo, R. Roy, The perovskite structure – a review of its role in ceramic science and technology, Mat Res Innovat, 4 (2000) 3-26.
[17] S.-Y. Chu, K. Uchino, Photostrictive effect in Plzt-Based ceramics and its applications, Ferroelectrics, 174 (1995) 185-196.
[18] K. Uchino, M. Aizawa, L.S. Nomura, Photostrictive effect in (Pb, La) (Zr, Ti)O3, Ferroelectrics, 64 (1985) 199-208.
[19] K. Nonaka, M. Akiyama, T. Hagio, A. Takase, Effect of Pb/(Zr+Ti) molar ratio on the photovoltaic properties of lead zirconate-titanate ceramics, Journal of the European Ceramic Society, 19 (1999) 1143-1148.
[20] K. Nonaka, M. Akiyama, T. Hagio, A. Takase, Effect of multiple impurity doping on the photovoltaic properties of lead zirconate-titanate ceramics, Ferroelectrics, 223 (1999) 357-364.
[21] Y.S. Yang, S.J. Lee, S. Yi, B.G. Chae, S.H. Lee, H.J. Joo, M.S. Jang, Schottky barrier effects in the photocurrent of sol–gel derived lead zirconate titanate thin film capacitors, Applied Physics Letters, 76 (2000) 774-776.
[22] L. Pintilie, I. Vrejoiu, G. Le Rhun, M. Alexe, Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films, Journal of Applied Physics, 101 (2007) -.
[23] P.S. Brody, High voltage photovoltaic effect in barium titanate and lead titanate-lead zirconate ceramics, Journal of Solid State Chemistry, 12 (1975) 193-200.
[24] N. Kazuhiro, A. Morito, X. Chao-Nan, H. Tsuyoshi, K. Masahiro, T. Akira, Enhanced Photovoltaic Response in Lead Lanthanum Zirconate-Titanate Ceramics with A-Site Deficient Composition for Photostrictor Application, Japanese Journal of Applied Physics, 39 (2000) 5144.
[25] K. Koumoto, L.M. Sheppard, H. Matsubara, Ceramic transactions: Mass and charge transport in ceramics. Volume 71, (1996).