|
[1] X. Daura, B. Jaun, D. Seebach, W. F. van Gunsteren, and A. E. Mark, “Re- versible peptide folding in solution by molecular dynamics simulation,” J. Mol. Biol., vol. 280, p. 925, 1998. [2] M.KarplusandG.A.Petsko,“Moleculardynamicssimulationsinbiology,”Nature, vol. 347, p. 631, 1990. [3] S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas, and D. S. Gal- vao, “Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators,” Phys. Rev. Lett., vol. 90, p. 055504, 2003. [4] J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw, “Long-timescale molecular dynamics simulations of protein structure and function,” Curr. Opin. Struct. Biol, vol. 19, p. 120, 2009. [5] J.C.Tully,“Moleculardynamicswithelectronictransitions,”J.Chem.Phys.,vol.93, p. 1061, 1990. [6] J. C. Tully, “Mixed quantum–classical dynamics,” Faraday Discuss., vol. 110, p. 407, 1998. [7] R. Kapral and G. Ciccotti, “Mixed quantum-classical dynamics,” J. Chem. Phys., vol. 110, p. 8919, 1999. [8] R. Kapral, “Progress in the theory of mixed quantum-classical dynamics,” Annu. Rev. Phys. Chem., vol. 57, p. 129, 2006. [9] G.STOCKandM.THOSS,“Classicaldescriptionofnonadiabaticquantumdynam- ics,” Adv. Chem. Phys., vol. 131, p. 243, 2005. [10] X. Sun, H. Wang, and W. H. Miller, “Semiclassical theory of electronically nonadi- abatic dynamics: Results of a linearized approximation to the initial value represen- tation,” J. Chem. Phys., vol. 109, p. 7064, 1998. [11] W.H.Miller,“TheSemiclassicalInitialValueRepresentation: APotentiallyPracti- cal Way for Adding Quantum Effects to Classical Molecular Dynamics Simulations,” J. Phys. Chem. A, vol. 105, p. 2942, 2001. [12] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Sta- tistical Mechanics, 2nd Edition. Springer, 1998. [13] B. J. BERNE and G. D. HARP, “ON THE CALCULATION OF TIME CORRELA- TION FUNCTIONS,” Adv. Chem. Phys., vol. XVII, p. 63, 1970. [14] N. Makri and K. Thompson, “Semiclassical influence functionals for quantum sys- tems in anharmonic environments,” Chem. Phys. Lett., vol. 291, p. 101, 1998. [15] K. Thompson and N. Makri, “Influence functionals with semiclassical propagators in combined forward–backward time,” J. Chem. Phys., vol. 110, p. 1343, 1999. [16] H. Wang, X. Sun, and W. H. Miller, “Semiclassical approximations for the calcula- tion of thermal rate constants for chemical reactions in complex molecular systems,” J. Chem. Phys., vol. 108, p. 9726, 1998. [17] S.Mukamel,PrinciplesofNonlinearOpticalSpectroscopy.OxfordUniversityPress, 1999. [18] R.E.FennaandB.W.Matthews,“Chlorophyllarrangementinabacteriochlorophyll protein from Chlorobium limicola,” Nature, vol. 258, p. 573, 1975. [19] R. Marcus, “On the theory of oxidation reduction reactions involving electron trans- fer. i,” J. Chem. Phys., vol. 24, p. 966, 1956. [20] R. Marcus, “Theoretical relations among rate constants, barriers, and theoretical re- lations among rate constants, barriers, and bronsted slopes of chemical reactions,” J. Phys. Chem., vol. 72, p. 891, 1968. [21] R. A. Marcus and N. Sutin, “Electron transfers in chemistry and biology,” Biochimi. Biophys. Acta, vol. 811, p. 265, 1985. [22] A. J. Leggett, “Quantum tunneling in the presence of an arbitrary linear dissipation mechanism,” Phys. Rev. B, vol. 30, p. 1208, 1984. [23] A. Garg, J. N. Onuchic, and V. Ambegaokar, “Effect of friction on electron transfer in biomolecules,” J. Chem. Phys., vol. 83, p. 4491, 1985. [24] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals. McGraw- Hill Companies, 1965. [25] N. Makri, “Feynman path integration in quantum dynamics,” Comput. Phys. Com- mun., vol. 63, p. 389, 1991. [26] J.H.vanVleck,“THECORRESPONDENCEPRINCIPLEINTHESTATISTICAL INTERPRETATION OF QUANTUM MECHANICS,” PNAS, vol. 14, p. 178, 1928. [27] H.-D.MeyerandW.H.Miller,“Aclassicalanalogforelectronicdegreesoffreedom in nonadiabatic collision processes,” J. Chem. Phys., vol. 70, p. 3214, 1979. [28] G. Stock and M. Thoss, “Semiclassical Description of Nonadiabatic Quantum Dy- namics,” Phys. Rev. Lett., vol. 78, p. 578, 1997. [29] M.ThossandG.Stock,“Mappingapproachtothesemiclassicaldescriptionofnona- diabatic quantum dynamics,” Phys. Rev. A, vol. 59, p. 64, 1999. [30] V. May and O. Ku&;#776;hn, Charge and Energy Transfer Dynamics in Molecular Systems, 3rd, Revised and Enlarged Edition. Wiley-VCH, 2011. [31] J. A. Leegwater, “Coherent versus Incoherent Energy Transfer and Trapping in Pho- tosynthetic Antenna,” J. Phys. Chem., vol. 100, p. 14403, 1996. [32] G.Panitchayangkoon,D.Hayes,K.A.Fransted,J.R.Caram,E.Harel,J.Wen,R.E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” PNAS, vol. 107, p. 12766, 2010. [33] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Manc&;#780;al, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446, p. 782, 2007. [34] A.J.Leggett,S.Chakravarty,A.T.Dorsey,M.P.A.Fisher,A.Garg,andW.Zwerger, “Dynamics of the dissipative two-state system,” vol. 59, p. 1, 1987. [35] H. Wang, X. Song, D. Chandler, and W. H. Miller, “Semiclassical study of elec- tronically nonadiabatic dynamics in the condensed-phase: Spin-boson problem with Debye spectral density,” J. Chem. Phys., vol. 110, p. 4828, 1999. [36] J.L.SkinnerandD.Hsu,“PureDephasingofaTwo-LevelSystem,”J.Phys.Chem., vol. 90, p. 4931, 1986. [37] G. Tao and W. H. Miller, “Semiclassical Description of Electronic Excitation Pop- ulation Transfer in a Model Photosynthetic System,” J. Phys. Chem. Lett., vol. 1, no. 6, p. 891, 2010. [38] U. Weiss, Quantum Dissipative Systems, 4th Edition. World Scientific Publishing Company, 2012. [39] N. Makri and D. E. Makarov, “Tensor propagator for iterative quantum time evo- lution of reduced density matrices. I. Theory,” J. Chem. Phys., vol. 102, p. 4600, 1995. [40] N. Makri and D. E. Makarov, “Tensor propagator for iterative quantum time evo- lution of reduced density matrices. II. Numerical methodology,” J. Chem. Phys., vol. 102, p. 4611, 1995. [41] H.-T. Chang, P.-P. Zhang, and Y.-C. Cheng, “Criteria for the accuracy of small po- laron quantum master equation in simulating excitation energy transfer dynamics,” J. Chem. Phys., vol. 139, p. 224112, 2013. [42] L.Chen,R.Zheng,Q.Shi,andY.Yan,“Opticallineshapesofmolecularaggregates: Hierarchical equations of motion method,” J. Chem. Phys., vol. 131, p. 094502, 2009. [43] Y. Tanimura and R. Kubo, “Time evolution of a quantum system in contact with a nearly gaussian-markoffian noise bath,” J. Phys. Soc. Jpn., vol. 58, p. 101, 1989. [44] A. Ishizaki and G. R. Fleming, “Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature,” PNAS, vol. 106, p. 17255, 2009. [45] S. I. E. Vulto, M. A. de Baat, R. J. W. Louwe, H. P. Permentier, T. Neef, M. Miller, H. van Amerongen, and T. J. Aartsma, “Exciton Simulations of Optical Spectra of the FMO Complex from the Green Sulfur Bacterium Chlorobium tepidumat 6 K,” J. Phys. Chem. B, vol. 102, p. 9577, 1998. [46] E. L. Read, G. S. Schlau-Cohen, G. S. Engel, J. Wen, R. E. Blankenship, and G. R. Fleming, “Visualization of Excitonic Structure in the Fenna-Matthews-Olson Pho- tosynthetic Complex by Polarization-Dependent Two-Dimensional Electronic Spec- troscopy,” Biophys. J., vol. 95, p. 847, 2008. [47] B. R. Landry and J. E. Subotnik, “Communication: Standard surface hopping pre- dicts incorrect scaling for Marcus’ golden-rule rate: The decoherence problem can- not be ignored,” J. Chem. Phys., vol. 135, p. 191101, 2011. [48] W. Xie, S. Bai, L. Zhu, and Q. Shi, “Calculation of Electron Transfer Rates Using Mixed Quantum Classical Approaches: Nonadiabatic Limit and Beyond,” J. Phys. Chem. A, vol. 117, p. 6196, 2013. [49] I. Prigogine and S. A. Rice, “Electron transfer reactions in solution: A historical per- spective,” Adv. Chem. Phys.: Electron Transfer - from Isolated Molecules to Biom- elecules, Part 1 and 2, vol. 106, 2007. [50] H. B. Gray and J. R. Winkler, “ELECTRON TRANSFER IN PROTEINS,” Annu. Rev. Biochem., vol. 65, p. 537, 1996. [51] P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,” Proc. R. Soc. A, vol. 114, p. 243, 1927. [52] H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechan- ics. Springer Tracts in Modern Physics, 1982. [53] D. J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective. University Science Books, 2006. [54] S. Levit and U. Smilansky, “A theorem on infinite products of eigenvalues of sturm- liouville type operators,” vol. 65, p. 299, 1977. [55] M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics. Springer, 1991.
|