參考文獻
中文部分
1. 陳玉玲 組織內人力資本的蓄積-智慧資本管理之觀點,國立中央大學人力資源管理研究所碩士論文 民國88年。2. 黃宛華 資訊服務智慧資本之研究,國立政治大學科技管理研究所碩士論文,民國88年。3. 蔡基德 資訊電子業之市場價值與帳面價值之差異探討,國立台灣大學會計研究所碩士論文 民國90年。4. 宋偉航譯,智慧資本:資訊時代的企業利基,智庫文化出版,民88年。Stewart,T., Intellectual capital: the new wealth of organizations, 1997.
5. 林大容譯,智慧資本:如何衡量資訊時代無形資產的價值,麥田出版,民88年。Edvinsson, L. and Malone, M. S., Intellectual capital: realizing your company’s true value by finding its hidden roots, 1997.
6. 施純協/祥宇開發股份有限公司智能資本編譯小組,智能資本,知行文化出版,民89年6月。 Roos, J., Roos, G., Dragonetti, N. C., and Edvinsson, L., Intellectual Capital─ Navigating the new business landscape, 1997.
7. 莫菲譯,無形資產致勝策略─ 微軟、網景、昇陽等成功企業的新財富,圓智文化出版,民88年12月。Sveiby, K. E., The new organizational wealth Managing and measuring knowledge-based assets, 1997.
8. 半導體工業年鑑,民國90年版。
9. 江忠儀,資訊軟體產業無形資產評價問題探討,軟體產業通訊,第25期,20-24頁,民國88年。10. 陳柏村 強化企業智慧資本的途徑,資訊傳真週刊,第591期,第70頁,民國88年。
11. 劉正田,企業無形資產價值評估問題之探討,會計研究月刊,第170 期,21-28頁,民國89年。12. 鄭惠之,智慧資本之評價與管理研討會紀實,會計研究月刊,第180期,民89 年11 月,18-26頁。13. 工業技術研究院http://www.itri.org.tw/chi/index.html
14. 中華民國證券櫃臺買賣中心:http://www.otc.org.tw/
15. 台灣證券交易所:http://www.tse.com.tw/
16. 全國高科技產業資料庫:http://www.slib.fju.edu.tw/itbc/micindex.asp
17. 證券暨期貨發展基金會:http://www.sfi.org.tw/
英文部份
1. Bassie, L and McMurrer, D “Training Investment Can Mean Financial Performance”, Training and Development , Vol.52, No.5, 1997, pp.40-42.
2. Chen, C. P. “Application of Orthogonal Arrays and MARS to Inventory Forecasting Stochastic Dynamic Programming”, Computational Statistics and Data Analysis, Vol.30, No.3, 1999, pp.317-341.
3. Craven, P., Wahba, G. “Smoothing Noisy Data with Spline Functions. Estimating the Correct Degree of Smoothing by the Method of Generalized Cross-Validation”, Numberische Mathematik, Vol.31, 1979, pp.317-403.
4. Davies, P. C. “Design Issues in Neural Network Development”, NEUROVEST Journal, 1994, pp.21-25.
5. De Gooijer, J. G., Ray B. K., Horst K. “Forecasting Exchange Rates Using TSMARS”, Journal of International Money and Finance, Vol.17, No.3, June 1998, pp 513-534.
6. De Veaux, R. D., Gorden, A. L., Comiso, J. C., Bacherer, N. E. “Modeling of Topographic Effects on Antarctic Sea Ice Using Multivariate Adaptive Regression Splines,” Journal of Geophysics Research, Vol.98, No.20, pp.307-20, 319.
7. Dzinkowski, R. “Mining Intellectual Capital”, Strategic Finance, Vol.81, No.4, Oct 1999, pp. 42-46.
8. Dzinkowski, R. “The Measurement and Management of Intellectual Capital: An Introduction”, Management Accounting, Vol.78, No.2, Feb 2000, pp. 32-36.
9. Dzinkowski, R. “The Value of Intellectual Capital”, The Journal of Business Strategy, Vol. 21, No.4, Jul/Aug 2000, pp.3-4.
10. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. “The KDD Process for Extracting Useful Knowledge from Volumes of Data”, Communications of the ACM, Vol.39, Nov.1996, pp27-37.
11. Frank, I. E. “Modern Nonlinear Regression Methods”, Chem. Int. Lab. Systems Vol.27, 1995, pp.1-9.
12. Freeman, J. A., Skapura, D. M. “Neural Networks Algorithms Applications, and Programming Techniques”, Addison-Wesley Publishing Company, 1992.
13. Friedman, J. H. “Multivariate Adaptive Regression Splines (with discussion)”, Annals of Statistics, Vol.19, 1991, pp1-141.
14. Friedman, J. H., Roosen, C. B. “An Introduction to Multivariate Adaptive Regression Splines”, Statistical Methods in Medical Research, Vol.4, 1995, pp.197-217.
15. Gill, R. W., Kuhnert, P. M., Warren, P. S., Stone, G., Kossoff, G. “Multi-parameter Fetal Risk Assessment in Pregnancies with Risk Factors”, Proceedings of the Health Informatics Conference, Melbourne, 1996.
16. Jean-Michel, G., Davide, V. “Linear Mixed-Effect Multivariate Adaptive Regression Spines Applied To Nonlinear Pharmacokinetics Data”, Journal of Biophatmaceutical Statistics, Vol.10, 2000, pp.383-398.
17. Johnson, W. H. A. “An Integrative Taxonomy of Intellectual Capital: Measuring the Stock and Flow of Intellectual Capital Components in the Firm”, International Journal of Technology Management, Vol.18, No. 5/6/7/8, 1999, pp. 562-575.
18. Lewis, P. A. W., Stevens, J. G. “Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines (MARS)”, Journal of American Statistical Association, 86 (416), 1991, pp.864-877.
19. Marshall, G., Grover, F. L., Henderson, W. G., Hammermeister, K. E. “Assessment of Predictive Models for Binary Outcome: An Empirical Approach Using Operative Death From Cardiac Surgery”, Statist. Med. Vol.13, 1994, pp.1501-1511.
20. Nguyen-Cong V., Van D. G., Rode, B. M. “Using Multivariate Adaptive Regression Splines to QSAR Studies of Dihydroartemisinin Derivatives”, European Journal of Medicinal Chemistry, Vol.31, No.10, 1996, pp.797-803.
21. Peter, S. “Forecasting Recessions: Can we Do Better on MARS”, Federal Reserve Bank of St. Louis, March/April, 2001, pp.39-49.
22. Rumelhart, E., Hinton, G. E., Williams, R. J. “Learning Internal Representations by Error Propagation in Parallel Distributed Processing”, MIT Press, Cambridge, MA, 1986, pp.318-362.
23. Steinberg, D., Bernard B., Phillip C., Kerry M. MARS User Guide. San Diego, CA: Salford Systems, 1999.
24. Stone, G., Chan, D., Kuhnert, P. M., Cameron, M. “Some Experience in the Analysis of Large and Complex Datasets”, Computing Science and Statistics: Proceedings of the Second World Congress of the IASC, Vol.29, 1997.
25. Vellido, A., Lisboa, P. J. G., Vaughan, J. “Neural Networks in Business: A Survey of Applications (1992-1998)”, Expert Systems with Applications, Vol.17, 1999, pp.51-70.
26. Zhang, G., Patutwo, B. E., Hu, M. Y. “Forecasting with Artificial Neural Networks: The State of the Art”, International Journal of Forecasting, Vol.14, 1998, pp.35-62.