|
[1] A. AYENU-PRAH and N. ATTOH-OKINE. A criterion for selecting relevant intrinsic mode functions in empirical mode decomposition. Advances in Adaptive Data Analysis, 2(1):1--24, 2010. [2] K.-M. Chang. Arrhythmia ecg noise reduction by ensemble empirical mode decomposition. Sensors, 10(6):6063--6080, 2010. [3] Y.-M. Chang, Z. Wu, , J. Chang, and N. E. Huang. Model validation based on ensemble empirical mode decomposition. Advances in Adaptive Data Analysis, 2(4):415--428, 2010. [4] W. Y. L. Dennis E. B. Tan. Sleep disorder detection and identification. Journal of Biomedical Science and Engineering, 5:330--340, 2010. [5] Z. Feng, X. Ding, and Y. Jiang. Pitch period estimation of voice signal based on eemd and hilbert transform. In Informatics in Control, Automation and Robotics (CAR), 2010 2nd International Asia Conference on, volume 1, pages 365 --368, march 2010. [6] P. Flandrin, G. Rilling, and P. Goncalves. Empirical mode decomposition as a filter bank. World Scientific, 11(2):112--114, 2004. [7] D. HUANG. and Y. XU. A new application of ensemble emd ameliorating the error from insufficient sampling rate. Advances in Adaptive Data Analysis, 3(4): 493--508, 2011. [8] N. E. Huang, C. C. Chern, K. Huang, L. W. Salvino, S. R. Long, and K. L. Fan. A new spectral representation of earthquake data: Hilbert spectral analysis of station tcu129, chi-chi, taiwan, 21 september 1999. Bulletin of the Seismological Society of America, 91(5):1310--1338, 2001. [9] N. E. Huang, Z. Shen, and S. R. Long. A new view of nonlinear water waves: the hilbert spectrum. Annual Review of Fluid Mechanics, 31:417 – 457, 1999. [10] N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. London, A454:903--995, 1998. [11] J. Joseph F. Hair, R. E. Anderson, R. L. Tatham, and W. C. Black. MUTIVARIATE DATA ANALYSIS with Reading. Macmillan Publishing Company, 1992. [12] Y. Lei, Z. He, and Y. Zi. Application of the eemd method to rotor fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 23:1327--1338, 2011. [13] F. MHAMDI, J.-M. POGG, and M. J. IDANE. Trend extraction for seasonal time series using ensemble empirical mode decomposition. Advances in Adaptive Data Analysis, 3(3):363--383, 2011. [14] P.-H. TSUI and C.-C. CHANG. Noise-modulated empirical mode decomposition. Advances in Adaptive Data Analysis, 2(1):25--37, 2010. [15] Z. Wu and N. E. Huang. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. London, A460:1597 – 1611, 2004. [16] Z. Wu and N. E. Huang. Ensemble empirical mode decomposition:a noiseassisted data analysis method. Advances in Adaptive Data Analysis, 1(1):1--41, 2009. [17] Z. Wu, N. E. Huang, S. R. Long, and C.-K. Peng. On the trend, detrending, and variability of nonlinear and nonstationary time series. PNAS, 104(38):14889 – 14894, 2007. [18] J.-R. YEH, J.-S. SHIEH, and N. E. Huang. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Advances in Adaptive Data Analysis, 2(2):135--156, 2010. [19] D. Yu, J. Cheng, and Y. Yang. Application of emdmethod and hilbert spectrum to the fault diagnosis of roller bearings. Mechanical Systems and Signal Processing, 19:259--270, 2005.
|