[1] http://panasonic.co.jp/corp/news/offical.data/data.dir/2015/04/en140410-4.html.
[2] Green M A. The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 2009, 17(3): 183~189
[3] Green M A. Emery. K. Progress in Photovoltaics, 21(5):827-837,2013.
[4] Aberle A G. Surface Passivation of Crystalline Silicon Solar Cells: A Review. Prog Photovoltaics, 2000, 8: 473~487
[5] Sze S M. Physics and technology of semiconductor devices. Wiley, 2001(2nd edition)
[6] Taur. Y. Fundamentals of modern VLSI devices. Cambridge, 1998.
[7] Shockley W. Statistics of recombination of holes and electrons. Physical Review, 87(5):835-842,1952
[8] Hall R.N. Electron-hole recombination in germanium. Physics Review, 87:837-387,1952.
[9] Rein S. Rehrl T, Lifetime spectroscopy for defect characterization. Journal of Applied Physics,91(4):2059-2070,2002
[10] Macdonald D. Cuevas A. Capture cross section of the acceptor level of iron-boron pairs in p-type silicon by injection-level dependent lifetime measurements. Journal of Applied Physics, 89(12):7932-7939,2001
[11] Hoex B, van Erven A J M, Bosch R C M, et al. Industrial high-rate (∼5 nm/s) deposited silicon nitride yielding high-quality bulk and surface passivation under optimum anti-reflection coating conditions. Progress in Photovoltaics: Research and Applications, 2005, 13(8): 705~712
[12] Hoex B, Heil S B S, Langereis E, et al. Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Applied Physics Letters, 2006, 89(4): 42112
[13] Schmidt J, Merkle A, Brendel R, et al. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al. Progress in Photovoltaics: Research and Applications, 2008, 16(6): 461~466
[14] Li T A, Cuevas A. Role of hydrogen in the surface passivation of crystalline silicon by sputtered aluminum oxide. Progress in Photovoltaics: Research and Applications, 2011, 19(3): 320~325
[15] Aberle A G. Progress in Low-temperature Surface Passivation of Silicon Solar Cells using Remote-plasma Silicon Nitride. Progress In Photovoltaics, 1997, 1(5): 29~50
[16] Hoex B, Schmidt J, Pohl P, et al. Silicon surface passivation by atomic layer deposited Al2O3. Journal of Applied Physics, 2008, 104(4): 44903
[17] Chhabra B, Weiland C, Opila R L, et al. Surface characterization of quinhydrone-methanol and iodine-methanol passivated silicon substrates using X-ray photoelectron spectroscopy. physica status solidi (a), 2011, 208(1): 86~90
[18] Kerr M. Very low bulk and surface recombination in oxidized silicon wafers. Semicond Sci Tech, 2002, 1(17): 35
[19] Chui C O, Kim H, Mcintyre P C, et al. Atomic Layer Deposition of High-K Dielectric for Germanium MOS Applications-Substrate Surface Preparation. IEEE Electron Device Letters, 2004, 25(5): 274~276
[20] Agostinelli G, Delabie A, Vitanov P, et al. Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge. Solar Energy Materials and Solar Cells, 2006, 90(18-19): 3438~3443
[21]Jan. S, Boris. B, Effective surface passivation of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks, Rapid Research Letters, 2009, 3(9): 287~289
[22] Beldarrain O, Duch M, Zabala M, et al. Blistering of atomic layer deposition Al2O3 layers grown on silicon and its effect on metal-insulator-semiconductor structures. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013, 31(1): 1A~128A
[23] Vermang B, Goverde H. A study of blister formation in ALD Al2O3 grown on silicon. IEEE, 2011, 1(978): 1135~1138
[24] Vermang B, Goverde H, Uruena A, et al. Blistering in ALD Al2O3 passivation layers as rear contacting for local Al BSF Si solar cells. Solar Energy Materials and Solar Cells, 2012, 101: 204~209
[25] Schmidt J. Influence of different post deposition treatment on the passivation quality and interface properties of thermal ALD Al2O3 capped by PECVD SiN. Eroupean PV Solar Energy Conference, 2012: 24~28
[26] Li M, Shin H, Jeong K, et al. Blistering Induced Degradation of Thermal Stability Al. JSTS:Journal of Semiconductor Technology and Science, 2014, 14(1): 53~60
[27] 朱則榮.CMOS及相關測試元件之設計、製作與量測: [碩士論文學位論文].國立清華大學, 1996[28] Xiao H. Introduction to Semiconductor Manufacturing Technology. International Edition, 2001
[29] 周仁均. Capacitance-Voltage Curve of MOS Structure : Measurement and Application: [碩士學位學位論文]. 國立清華大學, 2008
[30] Nicollian. MOS (Metal Oxide Semiconductor) Physics and Technology. Solid-State and Electron Devices, 1982, 1(130): 143~7100
[31]Kwa. K. A model for capacitance reconstruction from measured lossy MOS capacitance – voltage characteristics. Semicond. Sci. Technol, 2002, 18: 82~87
[32] Rein S. Lifetime spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Application.2005.
[33]Curvas A. Determination of Recombination Parameters in Semiconductors from Photoconductance Measurements. 1996 Confrence on Optoelectronic and Microelectronic Material and Device, 1996: 16~19
[34] Cuevas A. Prediction of the Open-circuit Voltage of Solar Cells from the Steady-state Photoconductance, 1997: 2, 79~90
[35] Sinton R A. Quasi-Steady-State Photoconductance, A New Method for Solar Cell Material and Device Characterization. IEEE, 1996: 457~460
[36] Koji Sugioka J F F. Low-Temperature Growth of Thin Films of Al2O3 by Sequential Surface Chemical Reaction of trimethylaluminum and H2O2. Japanese Journal of Applied Physics, 1991, 30(6B): L1139~1141
[37] G. S. Higashi, C. G F. Sequential surface chemiacl reaction limited frowth of high quality Al2O3 dielectrics. Applied Physics Letters, 1989, 19(55)
[38] Yang W S, Kim Y K, Yang S, et al. Effect of SiO2 intermediate layer on Al2O3/SiO2/n+poly Si interface deposited using atomic layer deposition (ALD) for deep submicron device applications. Surface and coatings technology, 2000, 131(1): 79~83
[39] Ashcroft, Mermin. Solidstate Physics Thomson Learning, 1976