跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.57) 您好!臺灣時間:2026/02/07 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林君芸
研究生(外文):Chun-yun Lin
論文名稱:含四級胺基離子液體有機型電解液對磷酸鋰鐵和鋰鎳錳鈷氧正極材料特性影響之研究
論文名稱(外文):Compatibility of LiFePO4 and LiNi1/3Mn1/3Co1/3O2 electrode materials with quaternary-ammonium based ionic liquid mixed with organic solvent electrolyte system
指導教授:張家欽張家欽引用關係
指導教授(外文):Chia-chin Chang
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:119
中文關鍵詞:tetraethylammonium bis(trifluoromethanesulfonyl)imide (N2222–TFSI)正極離子液體電解液鋰離子電池
外文關鍵詞:tetraethylammonium bis(trifluoromethanesulfonyl)cathodeelectrolyteionic liquidlithium-ion battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:532
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
離子液體(Ionic liquids, ILs)因其不易揮發和低可燃的特性,而適合做為具有長壽命和高安全性的鋰離子電池電解液。為了解正極(橄欖石結構的磷酸鋰鐵與層狀結構的鋰鎳錳鈷氧)和含有離子液體之有機型電解液之間的交互作用,本研究使用光譜測量(FTIR)、表面型態(SEM)、晶體結構分析(XRD),搭配阻抗頻譜(EIS)和標準電化學分析技術(CV)等方法,觀察不同正極(LiFePO4、NMC)在傳統的有機型與離子型電解液的行為。
本研究使用tetraethylammonium bis(trifluoromethanesulfonyl)- imide (N2222 - TFSI) 離子液體,將之與ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1)混合,加入1.2 mol kg-1 LiTFSI作為離子型電解液進行測試,另以傳統0.78 mol kg-1 LiPF6 EC/DMC有機型電解液為對照組。由結果可以清楚地發現無論是何種正極的性能表現均取決於其在電解液中的表面化學行為,即電解液於電池充放電後在正極表面形成複雜的表面化學反應,其效果可能是增加電極的穩定度,抑或是使阻抗上升造成電容量衰退。經實驗結果顯示,LiNi1/3Mn1/3Ni1/3O2 (NMC)電極於混合型電解液中循環壽命較差,而LiFePO4其電化學表現則相對穩定,並且有較佳的循環壽命。
Ionic liquids (ILs) have been proposed as electrolytes for long-lived and safe LIBs, due to their non-flammability and low volatility. The interactions between cathodes (as olivine LiFePO4 or layered LiNi1/3Mn1/3Co1/3O2 (NMC)) and ionic liquid mixed with organic solvent electrolye were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope(SEM), fourier transform infrared (FTIR), and coin cell test.
The electrolyte was mixed with an ionic liquid bis(trifluoromethanesulfonyl)imide (TFSI) as anion and tetraethylammonium (N2222) as cation, and ethylene carbonate (EC) and dimethyl carbonate (DMC). The results show that the LiFePO4 cathode in ionic liquid mixed with organic electrolyte has the better rate capability and cycling performance than the NMC cathode. However, the cycling performance of the NMC cathode in the IL based electrolyte is worse than that of the LiFePO4, due to the surface reaction between the IL based electrolyte and the NMC cathode.
摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 鋰離子二次電池工作原理介紹 4
1-2 鋰離子電池材料介紹 6
1-2-1 隔離膜 6
1-2-2 負極材料 7
1-2-2-1 鋰金屬和鋰合金負極材料 7
1-2-2-2 碳系負極材料 8
1-2-2-3 氧化物負極材料 9
1-2-3 正極材料 10
1-2-3-1 LiCoO2正極材料 10
1-2-3-2 NMC正極材料 11
1-2-3-3 LiFePO4正極材料 12
1-2-4 電解液 15
1-3 固液界面(SEI)膜對鋰離子電池的影響 19
第二章 文獻回顧 21
2-1 離子液體介紹 23
2-1-1 離子液體的物理特性 27
2-1-2 離子液體的電化學特性 31
2-2 離子液體應用於鋰離子電池之文獻回顧 33
第三章 含四級胺基離子液體有機型電解液對磷酸鋰鐵和鋰鎳錳鈷氧正極材料特性影響之研究 40
3-1研究動機與架構 40
3-2 實驗步驟及儀器介紹 42
3-2-1 實驗步驟 42
3-2-1-1電解液製備 42
3-2-1-2 極片製作 42
3-2-1-2-1 NMC 極片製作 42
3-2-1-2-2 LiFePO4 極片製作 43
3-2-1-3電池組裝測試與樣品製備 44
3-2-1-3-1 電池組裝 44
3-2-1-3-2電池電性測試 45
3-2-1-3-3測試樣品製備 46
3-2-1-4 電化學分析 47
3-2-1-4-1 循環伏安(CV)測試 47
3-2-1-4-2 交流阻抗(EIS)測試 48
3-2-1-5 材料鑑定分析 51
3-2-1-5-1 掃描式電子顯微鏡 (SEM) 51
3-2-1-5-2 X光繞射分析儀 (XRD) 52
3-2-1-5-3 傅立葉轉換紅外線光譜儀 (FTIR) 52
3-3 結果與討論 55
3-3-1 電解液基本特性 55
3-3-1-1 安全性測試 55
3-3-1-2 電化學窗口測試 57
3-3-2 充放電性能測試 59
3-3-2-1 循環壽命測試 59
3-3-2-2 高速率充放電測試 61
3-3-3 電池性能不佳因素探討 63
3-3-3-1 截止電壓 63
3-3-3-2 材料結構- X光繞射分析(XRD)測試 64
3-3-3-3 表面化學反應 65
3-3-3-3-1 掃描式電子顯微鏡(SEM) 65
3-3-3-3-2 傅氏轉換紅外線光譜儀 (FTIR) 分析 68
3-3-3-4化學分析電子光譜儀(ESCA/XPS) 測試 74
3-3-4 電化學分析 78
3-3-4-1 電化學阻抗頻譜(EIS)測試 78
3-3-4-2 循環伏安(CV)測試 82
3-4 小結 87
第四章 離子型電解液配方及FEC添加劑對鋰離子電池性能之研究 88
4-1 研究動機與架構 88
4-2 實驗儀器、材料及步驟 90
4-2-1 實驗步驟 90
4-2-1-1 電解液製備 90
4-3 結果與討論 91
4-3-1 鋰鹽濃度 91
4-3-1-1 充放電性能測試 91
4-3-1-1-1循環壽命測試 91
4-3-1-1-2高速率充放電測試 91
4-3-2 不同溶劑 93
4-3-2-1 電解液基本特性 93
4-3-2-1-1 安全性測試 93
4-3-2-1-2 導電度測試 95
4-3-2-2 充放電性能測試 96
4-3-2-2-1 循環壽命測試 96
4-3-2-2-2 高速率充放電測試 99
4-3-2-2-3 高溫循環壽命測試 100
4-3-2-3 掃描電子顯微鏡(SEM)分析 101
4-3-2-4 電化學阻抗頻譜(EIS)測試 103
4-3-3 添加劑 106
4-3-3-1 充放電性能測試 106
4-3-3-1-1 循環壽命測試 106
4-3-3-1-2 高溫循環壽命測試 108
4-4 小結 109
第五章 結論 110
參考文獻 111
1.陳金銘,啟動全球電動車革命,動力鋰電池材料崛起,新電子科技雜誌,(2010)。
2.林育潤、陳金銘,工業材料雜誌,215 (2004) 87。
3.H.-C. Jung, Y.-D. Ko, L.-S. Kang, G.-H. Kim, H. S. Hong and D.-W. Kim, “Crystal structure and microstructure of the LiFeBO3 cathode materials synthesized by solid-state reaction." 12th IUMRS International Conference in Asia (2011).
4.J. B. Goodenough, M. M. Thackeray, W. L. F. David, and P. G. Bruce, Revue de Chimic minerale, 21 (1984) 435.
5.林振華、林振富,充電式鋰離子電池-材料與應用,全華科技圖書股份有限公司,台北市 (2001) 8-1。
6.陳翁釧、謝登存,工業材料雜誌,215 (2004) 99。
7.郭炳焜、徐徽、王先友、肖立新,鋰離子電池,中南大學出版社,長沙市 (2002)。
8.L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu, Solid State Sciences, 8 (2006) 113.
9.費定國、李曰琪,工業材料雜誌,165 (2000) 152。
10.劉茂煌,工業材料雜誌, 157 (2000) 133。
11.M. Winter, J. O. Besenhard, Electrochim. Acta, 45 (1999) 31.
12.J. Yang, Y. Takeda, N. Imanishi, T. Ichikawa, and O. Yamamoto, Solid State Ionics, 1359 (2000) 175.
13.陳金銘,工業材料雜誌,133 (1998) 85。
14.費定國、李曰琪,工業材料雜誌,165 (2000) 152。
15.I.A. Courtney, J.R. Dahn, J. Electrochem. Soc., 144 (1997) 2045.
16.K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull., 15 (1980) 783.
17.T. Ohzuku, Y. Makimura, Chem. Lett., 30 (2001) 642.
18.I. Belharouak, W. Lu, D. Vissers, K. Amine. Electrochem. Commun., 8 (2006) 329.
19.S.H. Park, C.S. Yoon, S.G. Kang, H.-S. Kim, S.-I. Moon, Y.-K. Sun, Electrochim. Acta, 49 (2004) 557.
20.T.-H. Cho, Y. Shiosaki, H. Noguchi, J. Power Sources, 159 (2006) 1322.
21.Z.L. Liu, A.S. Yu, and J.Y. Lee, J. Power Sources, 81-82 (1999) 416.
22.Z.H. Lu, D.D. MacNeil, and J.R. Dahn, Electrochem. Solid State Lett., 4 (2001) A191-A194.
23.S. Jouanneau, D.D. MacNei1, Z. Lu, S.D. Beattie, G Murphy, and J.R. Dahn, J. Electrochem. Soc, 150 (2003) A1299-A1304.
24.Y. Chen, G.X. Wang, K. Konstantinov, H.K. Liu, and S.X. Dou, J. Power Sources, 119 (2003) 184-188.
25.N. Yabuuchi, I. Ohzuku, J. Power Sources, 119 (2003) 171-174.
26.Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, and T. Ohzuku, J. Power Sources, 119-121 (2003) 644-648.
27.A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc., 144 (1997) 1188.
28.蘇靜儀、楊模樺,工業材料雜誌,232 (2006) 155。
29.林育潤、蕭美慧、陳金銘,工業材料雜誌,218 (2005) 145。
30.N.J. Yun, H.-W. Ha, K.H. Jeong, H.-Y. Park, , and K. Kim, J. Power Sources, 160 (2006) 1361.
31.“二次電池比較表”,台灣立凱電能科技股分有限公司。
32.工研院電子報9810期。
33.K. Xu, Chem. Rev., 104 (2004) 4303.
34.Y. Ein-Eli, S. R. Thomas, V. R. Koch, D. Aurbach, A. Schecheter, and B. Markovsky, J. Electrochem. Soc., 143 (1996) L273.
35.V.R. Koch, J.L. Goldman, C.J. Mattos, and M. Mulvaney. J. Electrochem. Soc., 129 (1982) 1.
36.J. M.Tarascon, D. Guyomard, Solid State Ionics., 69 (1994) 293.
37.K. Takata, M. Morita, and Y. Matsuda, J. Electrochem. Soc., 132 (1985) 126.
38.S.K. Martha, E. Markevich, V. Burgel , G. Salitra, E. Zinigrad, B. Markovsky, H. Sclar , Z. Pramovich, O. Heik, D. Aurbach, I. Exnar, H. Buqa, T. Drezen, G. Semrau, M. Schmidt, D. Kovacheva, and N. Saliyski, J. Power Sources, 189 (2009) 288-296.
39.B. Scrosati, J. Garche, J. Power Sources, 195 (2010) 2419-2430.
40.J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, J. Power Sources, 54 (1993) 228.
41.J. O. Besenhard, Carbon, 14 (1976) 111.
42.M. Arakawa, J. Yamaki, J. Electroanal. Chem., 219 (1987) 273.
43.M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, Nature Materials, 8 (2009) 621.
44.R.D. Rogers, and K.R. Seddon, Science, 302 (2003) 792.
45.L. Yang, S. H. Fang, Chinese J. Power Sources, 34 (2010) 101.
46.H. Matsumoto, H. Sakaebe, and K. Tatsumi, J. Power Sources, 146 (2005) 45-50.
47.K. Liu, Y.-X. Zhou, H.-B. Han, S.-S. Zhou, W.-F. Feng, J. Niea, Hong Li , X.-J. Huang, A. Michel, and Z.-B. Zhou, Electrochimica Acta, 55 (2010) 7145-7151.
48.H.-B. Han, S.-S. Zhou, D.-J. Zhang, S.-W. Feng, L.-F. Li, K. Liu, W.-F. Feng, N. Jin, H. Li, X.-J. Huang, A. Michel, and Z.-B. Zhoua , J. Power Sources, 196 (2011) 3623-3632.
49.C. Arbizzani, G. Gabrielli, M. Mastragostino, J. Power Sources, 196 (2011) 4801-4805.
50.J. G. Huddleston, A. E. Visser, and R. D. Rogers, Green Chem., 3 (2001) 156-164.
51.H. Sakaebe, H. Matsumoto, and K. Tatsumi, J. Power Sources, 146 (2005) 693-697.
52.M. Holzapfel, C. Jost, A. Prodi-Schwab, F. Krumeich, A. Wursig,H. Buqa, and P. Nova′k, Carbon, 43 (2005) 1488-1498.
53.H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, Y. Aihara, J. Electrochem. Soc. 150 (2003) A695.
54.E. Markevich, V. Baranchugov, and D. Aurbach, Electrochemistry Communications, 8 (2006) 1331-1334.
55.Z. Liwei, J.-I. Yamaki, and E. Minato, J. Power Sources, 174 (2007) 352-358.
56.E. Minato, O. Shigeto, J.-I. Yamaki, A. D. Diego, B. Francesco, and S. Bruno, J. Power Sources, 138 (2004) 240-244.
57.Allen J. Bard, Larry R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, John Wiley and Sons, New York (1980).
58.蔡宗翰,砷化鎵單晶的電化學阻抗,逢甲大學材料與製造工程所 (2009) 碩士論文。
59.H. Li, L. Shi, W. Lu, X. Huang, and L. Chen, J. Electrochem. Soc., 148 (2001) A915.
60.L. Shi, H. Li, Z. Wang, X. Huang, and L. Chen, J. Mater Chem., 11 (2001) 1502.
61.W. X. Chen, J. Y. Lee, and Z. Liu, Carbon, 41 (2003) 959.
62.J. Y. Eom, J. W. Park, H. S. Kwon, and S. Rajendrana, J. Electrochem. Soc., 153 (2006) A1678.
63.張宜隆,熱處理矽晶圓中微量過渡元素之縱深濃度分佈分析,國立清華大學原子科學系 (2003) 碩士論文。
64.D. Aurbacha, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J. S. Gnanaraj, and H.-J. Kim, Electrochimica Acta, 50 (2004) 247-254.
65.D. Aurbach, B. Markovsky, M.D. Levi, E. Levi, A. Schechter, M. Moshkovich, and Y. Cohen, J. Power Sources, 95 (1999) 81–82.
66.D. Aurbach, J. Power Sources, 89 (2000) 206.
67.M. Koltypin, D. Aurbach, and L.F. Nazar, B. Ellis, Electrochem. Solid-State Lett., 10 (2007) A40-A44.
68.J. Jiang, J.R. Dahn, Electrochem. Commun., 6 (2004) 39-43.
69.D. Aurbach, K. Gamolsky, B.Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten, and M. Schmidt, J. Electrochem. Soc., 147 (2000) 1322-1331.
70.A. Ait Salah, P. Jozwiak, K. Zaghib, J. Garbarczyk, F. A. Gendron, and C.M. Julien, Spectrochimica Acta Part A, 65 (2006) 1007-1013.
71.K. Ketack, K. Daewoong, C. N. Cao, S.-W. Song, and K. Robert, Bull. Korean Chem. Soc., 32 (2011) 571.
72.D. Aurbach, B. Markovsky, A. Schechter, Y. Ein-Eli, and H. Cohen, J. Electrochem. Soc., 143 (1996) 3809.
73.A. Schechter, D. Aurbach, Langmuir, 15 (1999) 3334.
74.D. Aurbach, H.E. Gottlieb, Electrochim. Acta, 34 (1989) 141.
75.E. Markevich, R. Sharabia, V. Borgel, H. Gottlieb, G. Salitra , D. Aurbach, Guenter Semrau, and Michael A. Schmidt, Electrochimica Acta, 55 (2010) 2687-2696.
76.K. Kanamura, S. Toriyama, S. Shiraishi, M. Ohashi, and Z.-i. Takehara, J. Electroanalytical Chemistry, 419 (1996) 77-84.
77.D. Aurbach, Nonaqueous Electrochemistry, Marcel Dekker, Inc., New York (1999).
78.L.J. Hardwick, J.A. Saint, I.T. Lucas, M.M. Doeff, and R. Kosteckia. J. Electrochem. Soc., 156 (2009) A120-A127.
79.P. Verma, P. Maire, and P. Novák, Electrochimica Acta, 55 (2010) 6332-6341.
80.D. Aurbach, J. Power Sources, 119-121 (2003) 497-503.
81.M. Matsui, K. Dokko, and K. Kanamura, J. Power Sources, 177 (2008) 184-193.
82.M. Kerlau, M. Marcinek, V. Srinivasan, and R.M. Kostecki, Electrochimica Act, 52 (2007) 5422-5429.
83.H. Yang, G.V. Zhuang, and P.N. Ross Jr., J. Power Sources, 161 (2006) 573-579.
84.D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli, and H. Cohen, J. Electrochem. Soc., 143 (1996) 3809.
85.K. Kanamura, H. Tamura, S. Shiraishi, and Z.-I. Takehara, J. Electroanal. Chem., 394 (1995) 49.
86.D. Aurbach, I. Weissman, A. Schechter, and H. Cohen, Langmuir, 12 (1996) 3991.
87.K. Edström, M. Herstedt, and D.P. Abraham, J. Power Sources, 153 (2006) 380.
88.A.M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, and K. Edström, J. Power Sources, 119-121 (2003) 522.
89.K.-I. Morigaki, and A. Ohta, J. Power Sources, 76 (1998) 159.
90.A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, J. Electrochem. Soc., 144 (1997) 1188.
91.D. Bar-Tow, E. Peled, and L. Burstein, J. Electrochem. Soc., 146 (1999) 824.
92.A.M. Andersson, and K. Edstrom, J. Electrochem. Soc., 148 (2001) A1100.
93.G.R. Zhuang, Y.F. Chen, and P.N. Ross, Langmuir, 15 (1999) 1470.
94.N. Moussaif, C. Pagnoulle, J. Riga, and R. Je′roˆme, Polymer, 41 (2000) 3391-3394.
95.C. K. Chan, R. Ruffo, S. S. Hong, and Y. Cuid, J. Power Sources, 189 (2009) 1132-1140.
96.S. Leroy, H. Martinez, R. Dedryve`re, D. Lemordant, and D. Gonbea, Appl. Surf. Sci., 253 (2007) 4895-4905.
97.S.K. Martha, E. Markevich, V. Burgel, G. Salitra, E. Zinigrad, B. Markovsky, H. Sclar, Z. Pramovich, O. Heik, D. Aurbach, I. Exnar, H. Buqa, T. Drezen, G. Semrau, M. Schmidt, D. Kovacheva, and N. Saliyski, J. of Power Sources, 189 (2009) 288-296.
98.N.J. Yun, H.-W. Ha, K.H. Jeong, H.-Y. Park, and K. Kim, J. Power Sources, 160 (2006) 1361.
99.J. Ni, H. Zhou, J. Chen, and X. Zhang, Electrochim. Acta, 53 (2008) 3075-3083.
100.K.M. Shaju, G.V. Subba Rao, and B.V.R. Chowdari, Electrochim. Acta, 48 (2002) 145.
101.H. Nakai, T. Kubota, A. Kita, and A. Kawashima, J. Electrochem. Soc., 158 (2011) A798-A801.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊