跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游恒一
研究生(外文):Heng-I Yu
論文名稱:壓電薄板材料之靜態與動態分析
論文名稱(外文):Static and Dynamic Analysis for Piezoelectric Plates
指導教授:黃錦煌黃錦煌引用關係
指導教授(外文):Jin H. Huang
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:98
中文關鍵詞:壓電平板理論剪力變形平板理論
外文關鍵詞:Piezoelectricbeamshear deformation plate theory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在壓電平板的應用分析上,由於少有適當且實用的靜、動態分析方法,故在壓電應用上多採用有限元素數值法來評估壓電應用的可行性。本篇論文以Timoshenko beam理論與一階剪力變形平板理論(first order shear deformation plate theory)理論配合基本壓電理論來推導一維及二維壓電薄板模型,用以分析壓電薄板在簡支邊界條件下的靜態行為及若干重要模態下的共振頻率。
文中首先分別應用Timoshenko beam理論及一階剪力變形平板理論推導壓電薄板之分析模型,並以六方晶系的壓電陶瓷PZT-4及PIC151為例,分析壓電薄板的若干面內、面外共振頻率和靜態行為。將其分析結果分別和有限元素軟體(ANSYS)、部份實驗數據及傳統方法做比較驗証,同時亦對壓電薄板之行為特性做若干探討。最後以本文所推導之分析方法,對壓電複合疊層應用之靜、動態分析做初步的研究探討。
Except finite element method, there are no analytical approaches to analyze piezoelectric materials and their applications till now. To this end, This thesis presents two general and simple models to examine the electromechanical responses of piezoelectric materials that are modeled as a one dimensional Timoshenko beam and a two dimensional plate, respectively. These two models, with simply supported boundary conditions and appropriate loading conditions, enable analyze static and dynamic responses
Initially, the beam and plate models are respectively deduced from the Timoshenko beam theory and the first-order shear deformation theory. Then, the models are applied to investigate the static and dynamic characteristics. In terms of analyzing PZT-4 and PIC 151 as a beam and plate, respectively, numerical results of the proposed models are compared with those of ANSYS, the equivalent circuit method, and some experimental data from the literature. Finally, composite piezoelectric laminates are further studied by using the proposed models for plates.
第一章 緒論
1.1背景 1
1.2研究動機 4
1.3文獻回顧 7
1.4內容簡介 9
第二章 壓電理論
2.1壓電效應及壓電材料 11
2.2壓電本構方程式 14
第三章 一維壓電薄板模型
3.1一維壓電平板模型之統御方程式推導 20
3.2邊界條件與系統方程之解 28
3.3數值計算與分析 32
3.4結論 34
第四章 二維壓電薄板模型
4.1二維壓電薄板模型之推導 49
4.2簡支邊界條件下之薄板解析 56
4.3數值計算與分析 60
4.4 結論 63
第五章 壓電複合疊層板
5.1壓電薄板疊層分析 77
5.2數值計算與分析………………………………………..80
5.3結論 82
第六章 結論與展望
6.1本文主要成果……………………………………………91
6.2未來研究方向 92
參考文獻
附錄 A
附錄 B
1. ニュークラスシリーズ編集委員会, “圧電セラミクスの応用”,学献社,(1989)
2.
Tiersten, H. F., “Linear Piezoelectric Plate Vibrations”, Plenum Press, New York, (1969).
3.
Adelman, N. T. and Stavsky, Y., “Vibration of Radially Polarzied Composite Piezoceramic Cylinders and Disks”, Journal of Sound and Vibration, 43(1), 37-44,(1975)
4.
Kunkel, H. A., Locke, S and Pikeroen, B., “Finite-Element Analysis of Vibration Modes in Piezoelectric Ceramics Disks”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 37(4), 316-328, (1990)
5.
Gu, N., Cawley, P. and Hitchings, D., “The Finite Element Analysis of the Vibration Characteristics of Piezoelectric Discs”, J. Sound and Vib., 159(1),115-138(1992).
6.
Huang, Jin H. and Wu, Tsung-Lin, “Analysis of hybrid mutilayerd piezoelectric plates”, International journal of engineering science, 34(2),171-181(1995).
7.
Tang, Yvette Y., and Xu, K., “Dynamic analysis of a piezothermoelastic laminated plate”, Journal of Thermal Stresses, 18,87-104(1995).
8.
Liand, X., “Dynamic Respose of Linear/Nonlinear Laminated Structures Containing Piezoelectric Laminas”, Doctor’s Thesis, Virginia Polytechnic Institute and State Universty, (1997)
9.
Chang, M., “In-plane Vibration Displacement Measurement Using Fiber-optical Speckle Interferometry”, Precision Engineering, 16(1), 36-41, (1994)
10.
Koyuncu, B., “The investigation of high Frequency vibration modes of PZT-4 Transducers Using ESPI techniques with reference beam modulation”, Opt. Lasers Eng.,1.37-49(1980).
11.
Oswin, J. R., Salter, P. L., Santoyo, F. M. and Tyrer, J. R., “Electronic Speckle Pattern Interferometric Measurement”, Meas. Sci. Technol., 1, 1024-1030, (1990)
12.
黃吉宏, “應用振幅變動電子斑點干涉術探討三維壓電材料體及含裂紋板的振動問題”, 國立台灣大學機械工程學研究所博士論文,八十七年六月。
13.
Curie, P. and Curie, J., Soc. Min. de France, 3 , 90 , (1880).
14.
Hankel, W. G., Abh. Sachs., 12 , 457 , (1881).
15.
Hankel, W. G., Ber. Sachs., 33 , 52 , (1881).
16.
Langevin, A., Ultilisation de l’effect Piezoelectique, Presses Unicersitaires de France, (1942).
17.
吳朗著, “電子陶瓷-壓電” , 全欣出版 , (1994).
18.
ANSYS operations guide R5.5, ANSYS Inc. (1998)
19.
Mason, W. P, “Physical Acoustics-Principles and Methods”, V.1 Part A, Academic Press, New York and Lond(1964)
20.
Reddy, J. N., “Energy and variational methods in applied mechanics”, John wiley & sons, New York, (1969).
21.
Rogacheva, N. N., “The Theory of Piezoelectric Shells and Plates”, CRC Press, Inc., Boca Raton, Florida, (1994).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top