跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/30 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許卜昇
研究生(外文):Pu-sheng Hsu
論文名稱:直流電動機驅動系統應用於電動鑽頭及釘槍的設計與製作
論文名稱(外文):Design and Implementation of DC Motor Drive Systems for Electric Drill and Nail-Driver Applications
指導教授:劉添華
指導教授(外文):Tian-hua Liu
口試委員:劉添華
口試日期:2012-06-11
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:135
中文關鍵詞:電動鑽頭電動釘槍電流控制方法微型控制器無轉速偵測元件驅動系統.
外文關鍵詞:electric drillelectric nail-drivercurrent control methodmicrocontrollersensorless drive system.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:0
本文配合產業界的需求,研製電動鑽頭與釘槍的驅控系統。首先,探討電動鑽頭驅控系統的硬體及軟體研製,並提出新型的電流控制方法來改善傳統電動鑽頭的缺點。此外,利用比例-積分控制器來達成所需的電流控制。
其次,研製全數位化無轉速偵測元件的電動釘槍驅控系統。文中捨棄傳統的轉速偵測元件,只需測量直流電動機的電壓與電流,再配合轉速估測的技術,即可實現電動釘槍的閉迴路控制及驅動,達到低成本、省空間及提升機構設計方便性的目的。
文中以Microchip公司生產的微控制器PIC16F616作為電動鑽頭控制核心,來實現電流控制器的數學運算。並以微控制器PIC16F1823作為電動釘槍的控制核心,執行電流控制器及轉速估測器的運算。實測結果與理論分析相互吻合,說明本文所提方法的可行性及正確性。
The thesis investigates the design and implementation of the DC motor drive system for electric drill and nail-driver applications. This research has been cooperated with a manufacturing factory. In this thesis, first, the implementation of the driving and control system for the electric drill, which includes hardware and software, is discussed. A novel current control method is proposed to improve the disadvantages of the conventional electric drill system. In addition, a proportional-integral controller is used to obtain the required current control.
Next, a full-digital sensorless drive system of a electric nail-driver is implemented. The Hall-effect sensor is removed. By measuring the voltage and current of the DC motor, the rotor speed can be estimated to achieve the closed-loop control and driving system of the nail-driver. This sensorless technique can save cost, space, and avoid the problem of the high-frequency noise, which interfere with the encoder signal.
A microcontroller, PIC16F616, made by Microchip company, is used as the control center for the electric drill system to execute the current controller. On the other hand, a microcontroller, PIC16F1823 is used as the control center for the electric nail-driver to execute the current controller and speed estimation. Experimental results can validate the theoretical analysis to show the feasibility and correctness of the proposed method.
目錄

中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XII
符號索引 XIII
第一章 緒論 1
1.1動機與目的 1
1.2文獻回顧 3
1.2.1電動鑽頭相關文獻 4
1.2.2電動釘槍相關文獻 7
1.3大綱 10
第二章 直流永磁電動機 11
2.1簡介 11
2.2直流電動機的結構及原理 12
2.3直流永磁電動機的數學模式 18
第三章 電動鑽頭的系統架構與電流控制器設計 24
3.1簡介 24
3.2電動鑽頭的基本架構與使用需求 24
3.3電動鑽頭的電流控制方法 27
3.4電動鑽頭的控制器設計 29
3.5系統中斷頻率的選擇 35
第四章 電動釘槍的系統架構與轉速估測器設計 37
4.1簡介 37
4.2電動釘槍的動作原理 37
4.3電動釘槍的轉速估測器設計 39
4.4電動釘槍的電流緩啟動設計 42
4.5直流電動機的參數測量 44
第五章 系統研製 49
5.1簡介 49
5.2電動鑽頭的系統設計 49
5.2.1電動鑽頭的主電源電路 52
5.2.2電動鑽頭的驅動/控制電路 53
5.2.3電動鑽頭的軟體程式設計 62
5.3電動釘槍的系統設計 68
5.3.1電動釘槍的主電源電路 70
5.3.2電動釘槍的驅動/控制電路 71
5.3.3電動釘槍的軟體程式設計 75
第六章 實測結果 78
6.1簡介 78
6.2電動鑽頭的實測結果 78
6.3電動釘槍的實測結果 94
參考文獻 111
作者簡介 116
參考文獻
[1]N. Kularatna, “Modern batteries and their management — Part 1,” IEEE IECON 2010, pp. 1-103, Nov. 2010.
[2]H. Chen and G. Xie, “80C31 single chip computer control of the switched reluctance motor for locomotive in coal mines,” IEEE ICEMS 2001, pp. 604-607, Aug. 2001.
[3]J. C. Kim, S. H. Lee, J. Y. Kim, Y. C. Jang, I. S. Mokt, and H. J. Park, “A mixed-mode single-chip motor-drive-specific microcontroller with a 12-bit 125/KS/s ADC,” IEEE ASIC/SOC 2000, pp. 209-213, Sep. 2000.
[4]R. Zhang, X. Wang, Y. Yang, and D. Qiao, “Design of two-phase hybrid stepping motor driver with current closed-loop control based on PIC18F2331,” IEEE ICEMS 2008, pp. 2998-3001, Oct. 2008.
[5]F. Sheikholeslam and M. Habibi, “A low cost single microcontroller hybrid stepper motor controller and drive with adaptive ripple reduction using current feedback,” IEEE ICIT 2006, pp. 2514-2518, Dec. 2006.
[6]Y. Dong, “The analysis and implement of PLC- based PI control for the permanent magnet DC motor,” IEEE ICCSNA 2010, pp. 448-451, July 2010.
[7]P. Ananthababu and B. A. Reddy, “Control of PMDC motor using fuzzy PI controller,” IEEE INCACE 2009, pp. 1-4, June 2009.
[8]J. J. Munoz-Cesar and E. A. Merchan-Cruz, “Speed control of a DC brush motor with conventional PID and fuzzy PI controllers,” IEEE CERMA 2008, pp. 344-349, Oct. 2008.
[9]W. K. Ho, C. C. Hang, and J. H. Zhou, “Performance and gain and phase margins of well-known PID tuning formulas,” IEEE Transactions on Control System Technology, vol. 4, no. 4 , pp. 473-477, July 1996.
[10]T. Senjyu, H. Kamifurutono, and K. Uezato, “Robust speed control of DC servo motor based on Lyapunov's direct method,” IEEE PESC 1994, pp. 522-527, June 1994.
[11]P. Thirusakthimurugan and P. Dananjayan, “A robust auto tuning speed control of permanent magnet brushless DC motor,” IEEE ICIA 2006, pp. 270-273, Dec. 2006.
[12]M. Nuruganandam and M. Madheswaran, “Modeling and simulation of modified fuzzy logic controller for various types of DC motor drives,” IEEE INCACEC 2009, pp. 1-6, June 2009.
[13]M. Muruganandam and M. Madheswaran, “Performance analysis of fuzzy logic controller based DC-DC converter fed DC series motor,” IEEE CCDC 2009, pp. 1635-1640, June 2009.
[14]H. A. Yousef and H. M. Khalil, “A fuzzy logic-based control of series DC motor drives,” IEEE ISIE 1995, pp. 517-522, July 1995.
[15]M. F. Moussa, M. Saad, and Y. G. Dessouky, “Adaptive control and one-line identification of sensorless permanent magnet DC motor,” IEEE SIBIRCON 2010, pp. 852-857, July 2010.
[16]M. Koksal, F. Yenici, and A. N. Asya, “Position control of a permanent magnet DC motor by model reference adaptive control,” IEEE ISIE 2007, pp. 112-117, June 2007.
[17]A. A. El-Samahy, “Speed control of DC motor using adaptive variable structure control,” IEEE PESC 2000, pp. 1118-1123, June 2000.
[18]D. D. Carvalho, T. F. Bastos, and H. A. Scheenebeli, “Adapting a PMDC brush motor to work like a thruster in a ROV,” IEEE ICEMS 2000, pp. 783-741, Aug. 2000.
[19]Z. Linxin, C. Jialin, and D. Deyin, “Physical ergonomics analysis for power hand drill,” IEEE CAIDCD 2006, pp. 1-5, Nov. 2006.
[20]M. Widia and S. Z. M. Dawal, “The effect of vibration on muscle activity using electric drill,” IEEE TECHPOS 2009, pp. 1-5, Dec. 2009.
[21]R. G. Radwin, J. H. Lin, and T. G. Richard, “A biodynamic model of human reaction to impulsive torques encountered in hand tools,” IEEE IEMBS 2001, pp. 2707-2710, Aug. 2001
[22]O. Wallmark, P. Kjellqvist and F. Meier, “Analysis of axial leakage in high-speed slotless PM motors for industrial hand tools,” IEEE Transactions on Industry Applications, vol. 45, no. 5, pp. 1815-1820, Oct. 2009.
[23]B. C. Mecrow, A. G. Jack, D. J. Atkinson, P. G. Dickinson, and S. Swaddle, “High torque machines for power hand tool applications,” IEEE PEMD 2002, pp. 644-649, June 2002.
[24]R. B. Gmbh, “Electric power tool and method for operating same,”U.S. Patent Application, Sep. 14, 2010.
[25]N. Boules, “Design optimization of permanent magnet DC motors,” IEEE Transactions on Industry application, vol. 26, no. 4, pp. 786-792, Aug. 1990.
[26]W. Xu, H. W. Dommel, M. B. Hughes, G. W. K. Chang, and L.Tan, “Modeling of adjustable speed drives for power system harmonic analysis,” IEEE Transactions on Power Delivery, vol. 14, no. 2 , pp. 595-601, Apr. 1999.
[27]O. S. Lobosco, “Modeling and simulation of DC motors in dynamic conditions allowing for the armature reaction,” IEEE Transactions on Energy Conversion, vol. 14, no. 4, pp. 1288-1293, Dec. 1999.
[28]R. M. Stephan, “A simple model for a thyristor-driven DC motor considering continuous and discontinuous current modes,” IEEE Transactions on Education, vol. 34, no. 4, pp. 330-335, Nov. 1991.
[29]S. Vhasure, Prakasha and D. T. Krishnan, “Fast response digital speed and current regulators for thyristor fed reversible regenerative DC motor drives,” IEEE ICDESIG 1996, pp. 764-769, Jan. 1996.
[30]T. Castagnet and J. Nicolai, “Digital control for brush DC motor,” IEEE Transactions on Industry application, vol. 30, no. 4, pp. 883-888, Aug. 1994.
[31]Y. Iwaji and S. Fukuda. “A pulse frequency modulated PWM inverter for induction motor drives,” IEEE Transactions on Power Electronics, vol. 7, no. 2, pp. 404-410, Apr. 1992.
[32]M. I. Jahmeerbacus, M. K. Oolun, C. Bhurtun, and K. M. S. Soyjaudah, “Speed sensorless control of a converter-fed DC motor,” IEEE AFRICON 1999, pp. 453-456, Sep. 1999.
[33]E. Afjei, A. N. Ghomsheh, and A. Karami, “Sensorless speed/position control of brushed DC motor,” IEEE ACEMP 2007, pp. 730-732, Sep. 2007.
[34]P. Chevrel and S. Siala, “Robust DC-motor speed control without any mechanical sensor,” IEEE ICCA 1997, pp. 244-246, Oct. 1997.
[35]S. Praesomboon, S. Athaphaisal, S. Yimman, R. Boontawan, and K. Dejhan, “Sensorless speed control of DC servo motor using Kalman filter,” IEEE ICICS 2009, pp. 1-5, Dec. 2009.
[36]E. Vazquez-Sanchez, J. Gomez-Gil, J. C. Gamazo-Real, and J. F. Diez-Higuera, “A new method for sensorless estimation of the speed and position in brushed DC motors using support vector machines,” IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1397-1408, Mar. 2012.
[37]R. Kelly and J. Moreno, “Learning PID structures in an introductory course of automatic control,” IEEE Transactions on Education, vol. 44, no. 4, pp. 373-376, Nov. 2001.
[38]E. V. Sanchez, J. G. Gil, J. C. G. Real, and J. D. D. Higuera, “Simulation and analysis of hysteresis current controller in motor control,” IEEE ICICS 2010, pp. 1397-1408, Dec. 2010.
[39]J. Li and D. Wang, “Study and simulation of a novel hysteresis current control strategy,” IEEE ICICTA 2009, pp. 306-309, Oct. 2009.
[40]S. Sambandan and A. Nathan, “Fuzzy current control using current mode WTA-LTA circuits in flexible organic displays,” IEEE MSCS 2005, pp. 1609-1612, Aug. 2005.
[41]E. Kim, H. Lee, and M. Park, “Fuzzy control of a direct current motor system with the guaranteed stability,” IEEE IFSCP 1999, pp. 1734-1737, Aug. 1999.
[42]R. L. A. Ribeiro, C. B. Jacobina, A. D. Araujo, M. B. Santos, and A. C. Oliverira, “A non-standard robust adaptive stator current control strategy for induction motor drives,” IEEE PESC 2007, pp. 2113-2119, June 2007.
[43]C. J. Zhang and W. Matthew, “Robust adaptive stator current control for an induction machine,” IEEE CCA 2003, pp. 779-784, June 2003.
[44]劉昌煥主編,電機機械,東華書局,中華民國91年08月。
[45]孫瑜編著,電工機械I,五南書局,中華民國96年05月。
[46]李淵全編著,電機機械,全威圖書有限公司,中華民國90年07月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top