跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 14:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃裕仁
研究生(外文):Yu-JenHuang
論文名稱:特定硝化抑制化合物對高與低鹽環境馴養富含氨氧化古細菌族群影響之研究
論文名稱(外文):Inhibitory effects of specific nitrification inhibitors on ammonia oxidizing archaeal community enriched under high and low salinity environments
指導教授:黃良銘黃良銘引用關係
指導教授(外文):Liang-Ming Whang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:139
中文關鍵詞:硝化作用氨氧化古細菌硝化抑制作用硝化抑制化合物鹽度
外文關鍵詞:NitrificationAmmonia oxidizing archaeaNitrification inhibitionNitrification inhibitorSalinity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  硝化作用在生物除氮程序當中為不可或缺的機制,其主要分成兩階段(氨氧化作用及亞硝酸鹽氧化作用),其中在氨氧化階段被認為是整體硝化作用的速率限制步驟,因此氨氧化作用的活性將會影響到整體硝化活性的進行。一直以來氨氧化階段被認為主要由氨氧化細菌族群所負責,然而近年來分生及純化技術的進步成熟,新發現了另一氨氧化古細菌族群也同時參與了氨氧化作用。在許多學者研究進一步發現了在某些特定環境當中氨氧化古細菌族群相對於氨氧化細菌族群佔主導地位,也有許多指出氨氧化古細族群在條件嚴苛的環境具有存活能力,這些氨氧化古細菌族群的研究發現也使學者對整體硝化作用產生了相當的改觀。

  在活性污泥系統當中許多因子會影響到硝化作用,如pH、溫度、溶氧、硝化抑制化合物…等。其中硝化抑制化合物廣泛存在廢水當中,進入活性污泥系統後即會造成硝化系統有明顯的抑制行為,許多學者已針對氨氧化細菌族群研究確立了不同種類的化合物於氨氧化細菌族群不同程度的影響研究。然而這些硝化抑制化合物是否對於氨氧化古細菌族群有影響仍尚未有一定了解。因此,本研究利用實驗室已馴化多年存在於高和低鹽環境中富含豐富的氨氧化古細菌族群作為研究對象,針對已知會造成氨氧化細菌族群有明顯抑制行為的化合物,做系統性的批次實驗來探討這些化合物是否會造成氨氧化古細菌族群的影響。

  本研究主要針對的特定硝化抑制化合物分為三類,分別為芳香族碳氫化合物、有機硫化合物以及有機氮化合物。在批次實驗中發現這三類的化合物皆會對氨氧化古細菌族群造成不同程度上的影響。在芳香族碳氫化合物批次實驗中發現,當氨氧化古細菌族群暴露不同濃度的苯和甲苯會造成60%以上的抑制行為,而存在於低鹽度環境中的氨氧化古細菌族群暴露於苯酚時,相較於文獻中指出對於氨氧化細菌的抑制性來說有較高的耐受能力。有機氮化合物的批次實驗中,無論存在於高鹽度或低鹽度環境的氨氧化古細菌族群長時間暴露於DMS以及ATU會造成比氨氧化速率的下降及氨氧化作用的遲滯。在有機氮化合物(EDA和Pyridine)的測試當中發現相較於文獻中對於不同硝化系統的抑制行為,整體有機氮化合物造成氨氧化古細菌族群的抑制影響是相當明顯的。

  Nitrification is a key step in biological nitrogen removal process, and ammonia oxidation had been considered as rate limit step in nitrification process. It was believed that ammonia oxidizing bacteria (AOB) were the main group responsible for ammonia oxidation however, several new ammonia-oxidizing organisms belonged to the archaeal domain were found also involving in ammonia oxidation had changed this view. Archaea was thought to have advantages over bacteria in extreme environments, such as harsh temperature, pH, and the existence of toxic chemicals. Therefore, it was considered that ammonia oxidizing archaea (AOA) may play more important role than ammonia oxidizing bacteria on ammonia oxidation in specific environment. Many chemicals, existing in wastewater treatment process, reported to inhibit ammonia oxidizing bacteria on ammonia oxidation activity. However, there is much less information about those chemicals inhibition effects on ammonia oxidizing archaea. Different responses of ammonia oxidizing archaea and bacteria to inhibitive chemicals would provide alternative choices for wastewater treatment process. Therefore, it is very important to establish the inhibition information of AOA. In this study, two laboratory-scale reactors were operated under high (34‰) and low salinity (2.5‰) respectively, which both contain high level of AOA enrichments were used to evaluate the resistance of AOA to specific nitrification inhibitors by batch tests. Three different types of specific nitrification inhibitors were chosen in this study, including aromatic hydrocarbon, organic sulfur compound and organic nitrogen compound, in order to systematically investigate the impact of ammonia oxidation on AOA. In the batch tests, all of selected specific nitrification inhibitors had different levels of inhibitory effect on AOA enrichments in high and low salinity condition. Benzene and Toluene decreased over 60% of ammonia oxidation activity on AOA during batch tests. The batch tests with phenol were found that AOA in low salinity condition had high resistance to phenol than ammonia oxidizing bacteria. AOA in high and low salinity condition had decreased ammonia oxidation activity under long-time exposure to DMS and ATU. In the batch tests with organic nitrogen compound, the ammonia oxidation activity of AOA significantly decreased with increasing concentrations of EDA and pyridine. The inhibitory effect on AOA in high and low salinity sludge might have more tolerance to specific nitrification inhibitors than nitrifying community.
摘要 I
Abstract III
Acknowledgements V
Table of Content VIII
List of Tables XII
List of figures XIV
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2-1 Nitrogen cycle 3
2-2 Effect of nitrogen to the Aquatic system 5
2-3 Nitrification 7
2-4 Kinetic of nitrification 9
2-5 Ammonia oxidizing bacteria (AOB) 10
2-5-1 The metabolism of AOB 10
2-5-2 The phylogeny of AOB 10
2-6 Ammonia oxidizing archaea (AOA) 13
2-6-1 The history of discovering AOA 13
2-6-2 Distribution of AOA habitat 14
2-6-3 Physiological property of AOA 15
2-7 Occurrence of AOB in wastewater treatment plant 16
2-8 Occurrence of AOA in wastewater treatment plant 17
2-9 Effect of environmental factors on nitrification 19
2-9-1 Effect of pH on nitrification 19
2-9-2 Effect of dissolved oxygen on nitrification 20
2-9-3 Effect of temperature on nitrification 21
2-10 Nitrification inhibitor 22
2-10-1 Inhibitory tests in nitrification 22
2-10-2 Mechanism of nitrification inhibitors 24
2-11 Molecular methods for studying nitrify communities 25
2-11-1 Polymerase chain reaction (PCR) 25
2-11-2 Terminal restriction fragment length polymorphism
(T-RFLP) 26
2-11-3 Real time PCR 28
Chapter 3 Materials and Methods 31
3-1 Research overview 31
3-2 CSTR Bioreactor 32
3-3 Analytical methods 35
3-3-1 Water quality analysis 35
3-3-2 Chemical analysis of inhibitors 35
3-4 Molecular methods 37
3-4-1 Protein extraction 37
3-4-2 DNA extraction 38
3-4-3 PCR Amplification 40
3-4-4 T-RFLP 42
3-4-5 Real-time PCR 42
3-5 Batch tests to evaluate the inhibition effect of specific nitrification inhibitor 45
3-5-1 Selected specific nitrification inhibitor 45
3-5-2 Specific nitrification inhibition on enriched AOA 45
Chapter 4 Results and Discussion 49
4-1 Performance of continuous-flow stirred tank reactors (CSTR) 49
4-2 AOA community analysis by T-RFLP in high and low salinity reactors 53
4-3 AOA and AOB abundance in high and low salinity reactors 55
4-4 Batch test- Effect of ammonia concentration on high and low salinity AOA enrichments 57
4-5 Batch test- Effect of streptomycin on high and low salinity sludge 60
4-6 Batch test-Effect of aromatic hydrocarbon compound on high and low salinity sludge 63
4-6-1 Effect of phenol on high and low salinity sludge 63
4-6-1-1 Effect of phenol on high salinity sludge 63
4-6-1-2 Effect of phenol on low salinity sludge 66
4-6-2 Effect of benzene on high and low salinity sludge 69
4-6-2-1 The ratio of benzene concentration in headspace and liquid phase during batch test 69
4-6-2-2 Effect of benzene on high salinity sludge 70
4-6-2-3 Effect of benzene on low salinity sludge 73
4-6-3 Effect of Toluene on high and low salinity sludge 76
4-6-3-1 The ratio of Toluene concentration in headspace and liquid phase during batch test 76
4-6-3-2 Effect of Toluene on high salinity sludge 77
4-6-3-3 Effect of Toluene on low salinity sludge 80
4-6-4 Summary 83
4-7 Batch test-Effect of organic sulfur compound on high and low salinity sludge 84
4-7-1 Effect of DMS on high and low salinity sludge 84
4-7-1-1 The ratio of DMS concentration in headspace and liquid phase during batch test 84
4-7-1-2 Effect of DMS on high salinity sludge 85
4-7-1-3 Effect of DMS on low salinity sludge 91
4-7-2 Effect of ATU on high and low salinity sludge 96
4-7-2-1 Effect of ATU on high salinity sludge 96
4-7-2-2 Effect of ATU on low salinity sludge 99
4-7-3 Summary 101
4-8 Effect of organic nitrogen compound on high and low salinity sludge 102
4-8-1 Effect of EDA on high and low salinity sludge 102
4-8-1-1 Effect of EDA on high salinity sludge 102
4-8-1-2 Effect of EDA on low salinity sludge 105
4-8-2 Effect of pyridine on high and low salinity sludge 108
4-8-2-1 Effect of pyridine on high salinity sludge 108
4-8-2-2 Effect of pyridine on low salinity sludge 111
4-8-2-3 Summary 113
4-9 Summary of effect of nitrification inhibitors on AOA enrichments in high and low salinity condition 114
Chapter 5 Conclusions and Suggestions 116
Reference 119

9509, I.S.I. 1989. Water quality-method for assessing the inhibition of nitrification of activated sludge microorganisms by chemicals and waste waters. International Organization for Standardization.
Abeliovich, A. 1992. Transformations of ammonia and the environmental impact of nitrifying bacteria. Biodegradation, 3(2-3), 255-264.
Adair, K.L., , E. 2008. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microbial ecology, 56(3), 420-426.
Amor, L., Eiroa, M., Kennes, C., Veiga, M. 2005. Phenol biodegradation and its effect on the nitrification process. Water Res, 39(13), 2915-2920.
Anthonisen, A., Loehr, R., Prakasam, T., Srinath, E. 1976. Inhibition of nitrification by ammonia and nitrous acid. Journal (Water Pollution Control Federation), 835-852.
Arp, D.J., Stein, L.Y. 2003. Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Critical Reviews in Biochemistry and Molecular Biology, 38(6), 471-495.
Arvin, E., Dyreborg, S., Menck, C., Olsen, J. 1994. A mini-nitrification test for toxicity screening, MINNTOX. Water Res, 28(9), 2029-2031.
Bates, T., Lamb, B., Guenther, A., Dignon, J., Stoiber, R. 1992. Sulfur emissions to the atmosphere from natural sourees. Journal of Atmospheric Chemistry, 14(1-4), 315-337.
Beg, S., Atiqullah, M. 1983. Interactions of noncompetitive inhibitors on the nitrification process. Journal (Water Pollution Control Federation), 1080-1086.
Bitton, G. 2005. Wastewater microbiology. Wiley-Liss.Blum, D.J., Speece, R. 1991. A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlations. Research Journal of the Water Pollution Control Federation, 198-207.
Bremner, J., Bundy, L. 1974. Inhibition of nitrification in soils by volatile sulfur compounds. Soil Biology and Biochemistry, 6(3), 161-165.
Broude, N.E. 2002. Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. TRENDS in Biotechnology, 20(6), 249-256.
Brown, J.R., Doolittle, W.F. 1997. Archaea and the prokaryote-to-eukaryote transition. Microbiology and Molecular Biology Reviews, 61(4), 456-502.
Camargo, J.A., Alonso, Á. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32(6), 831.
De La Torre, J.R., Walker, C.B., Ingalls, A.E., Könneke, M., Stahl, D.A. 2008. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology, 10(3), 810-818.
Diaz, R.J., Rosenberg, R. 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and marine biology. An annual review, 33, 245-03.
Dionisi, H.M., Layton, A.C., Harms, G., Gregory, I.R., Robinson, K.G., Sayler, G.S. 2002. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Applied and environmental microbiology, 68(1), 245-253.
Dolah, F.M.V., Roelke, D., Greene, R.M. 2001. Health and ecological impacts of harmful algal blooms: risk assessment needs. Human and Ecological Risk Assessment: An International Journal, 7(5), 1329-1345.
Dyreborg, S., Arvin, E. 1995. Inhibition of nitrification by creosote-contaminated water. Water Res, 29(6), 1603-1606.
Edwards, K.J., Bach, W., McCollom, T.M., Rogers, D.R. 2004. Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiology Journal, 21(6), 393-404.
Ensign, S.A., Hyman, M.R., Arp, D.J. 1993. In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper. Journal of bacteriology, 175(7), 1971-1980.
Erguder, T.H., Boon, N., Wittebolle, L., Marzorati, M., Verstraete, W. 2009. Environmental factors shaping the ecological niches of ammonia‐oxidizing archaea. FEMS Microbiology reviews, 33(5), 855-869.
Ford, D.L., Churchwell, R.L., Kachtick, J.W. 1980. Comprehensive analysis of nitrification of chemical processing wastewaters. Journal (Water Pollution Control Federation), 2726-2746.
Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., Oakley, B.B. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14683-14688.
Freitag, T.E., Prosser, J.I. 2003. Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Applied and environmental microbiology, 69(3), 1359-1371.
Gernaey, K., Verschuere, L., Luyten, L., Verstraete, W. 1997. Fast and sensitive acute toxicity detection with an enrichment nitrifying culture. Water environment research, 69(6), 1163-1169.
Ginestet, P., Audic, J.-M., Urbain, V., Block, J.-C. 1998. Estimation of nitrifying bacterial activities by measuring oxygen uptake in the presence of the metabolic inhibitors allylthiourea and azide. Applied and environmental microbiology, 64(6), 2266-2268.
Grunditz, C., Dalhammar, G. 2001. Development of nitrification inhibition assays using pure cultures of nitrosomonas and nitrobacter. Water Res, 35(2), 433-440.
Gunsalus, I., Pederson, T., Sligar, S. 1975. Oxygenase-catalyzed biological hydroxylations. Annual review of biochemistry, 44(1), 377-407.
Hatzenpichler, R., Lebedeva, E.V., Spieck, E., Stoecker, K., Richter, A., Daims, H., Wagner, M. 2008. A moderately thermophilic ammonia-oxidizing
crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences, 105(6), 2134-2139.
He, J.z., Shen, J.p., Zhang, L.m., Zhu, Y.g., Zheng, Y.m., Xu, M.g., Di, H. 2007. Quantitative analyses of the abundance and composition of ammonia‐oxidizing bacteria and ammonia‐oxidizing archaea of a Chinese upland red soil under long‐term fertilization practices. Environmental Microbiology, 9(9), 2364-2374.
Head, I.M., Hiorns, W.D., Embley, T.M., McCarthy, A.J., Saunders, J.R. 1993. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. Journal of general Microbiology, 139(6), 1147-1153.
Hockenbury, M.R., Grady Jr, C.L. 1977. Inhibition of nitrification-effects of selected organic compounds. Journal (Water Pollution Control Federation), 768-777.
Hooper, A.B., Terry, K.R. 1973. Specific inhibitors of ammonia oxidation in Nitrosomonas. Journal of bacteriology, 115(2), 480-485.
Hooper, A.B., Vannelli, T., Bergmann, D.J., Arciero, D.M. 1997. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek, 71(1-2), 59-67.
Horz, H.-P., Rotthauwe, J.-H., Lukow, T., Liesack, W. 2000. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods, 39(3), 197-204.
Howarth, R., Anderson, D., Cloern, J., Elfring, C., Hopkinson, C., Lapointe, B., Malone, T., Marcus, N., McGlathery, K., Sharpley, A. 2000. Nutrient pollution of coastal rivers, bays, and seas. Issues in Ecology(7).
Hu, Z., Chandran, K., Grasso, D., Smets, B.F. 2003. Nitrification inhibition by ethylenediamine-based chelating agents. Environmental engineering science, 20(3), 219-228.
Huang, C.-S., Hopson, N.E. 1974. Nitrification rate in biological processes. Journal of the Environmental Engineering Division, 100(2), 409-422.
Hyman, M.R., Wood, P. 1985. Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. Biochemical Journal, 227(3), 719.
Inomae, K., Araki, H., Koga, K., Awaya, Y., Kusuda, T., Matsuo, Y. 1987. Nitrogen removal in an oxidation ditch with intermittent aeration. Water Science & Technology, 19(1-2), 209-218.
Jensen, F.B. 1996. Uptake, elimination and effects of nitrite and nitrate in freshwater crayfish ( Astacus astacus). Aquatic toxicology, 34(2), 95-104.
Jetten, M.S., Strous, M., Pas‐Schoonen, K.T., Schalk, J., Dongen, U.G., Graaf, A.A., Logemann, S., Muyzer, G., Loosdrecht, M., Kuenen, J.G. 1998. The anaerobic oxidation of ammonium. FEMS Microbiology reviews, 22(5), 421-437.
Jiang, H., Huang, Q., Dong, H., Wang, P., Wang, F., Li, W., Zhang, C. 2010. RNA-based investigation of ammonia-oxidizing archaea in hot springs of Yunnan Province, China. Applied and environmental microbiology, 76(13), 4538-4541.
Jin, T., Zhang, T., Yan, Q. 2010. Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Applied microbiology and biotechnology, 87(3), 1167-1176.
Juliastuti, S., Baeyens, J., Creemers, C. 2003. Inhibition of nitrification by heavy metals and organic compounds: The ISO 9509 test. Environmental engineering science, 20(2), 79-90.
Juliette, L.Y., Hyman, M.R., Arp, D.J. 1993. Inhibition of ammonia oxidation in Nitrosomonas europaea by sulfur compounds: thioethers are oxidized to sulfoxides by ammonia monooxygenase. Applied and environmental microbiology, 59(11), 3718-3727.
Juretschko, S., Timmermann, G., Schmid, M., Schleifer, K.-H., Pommerening-Röser, A., Koops, H.-P., Wagner, M. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Applied and environmental microbiology, 64(8), 3042-3051.
Könneke, M., Bernhard, A.E., José, R., Walker, C.B., Waterbury, J.B., Stahl, D.A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), 543-546.
Kasuga, I., Nakagaki, H., Kurisu, F., Furumai, H. 2010. Predominance of ammonia-oxidizing archaea on granular activated carbon used in a full-scale advanced drinking water treatment plant. Water Res, 44(17), 5039-5049.
Keen, G., Prosser, J. 1987. Steady state and transient growth of autotrophic nitrifying bacteria. Archives of microbiology, 147(1), 73-79.
Keener, W.K., Arp, D.J. 1993. Kinetic studies of ammonia monooxygenase inhibition in Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-cell assay. Applied and environmental microbiology, 59(8), 2501-2510.
Keener, W.K., Arp, D.J. 1994. Transformations of aromatic compounds by Nitrosomonas europaea. Applied and environmental microbiology, 60(6), 1914-1920.
Kelly, R., Henriques, I., Love, N. 2004. Chemical inhibition of nitrification in activated sludge. Biotechnology and bioengineering, 85(6), 683-694.
Kim, S.-S., Kim, H.-J. 2003. Impact and threshold concentration of toxic materials in the stripped gas liquor on nitrification. Korean Journal of Chemical Engineering, 20(6), 1103-1110.
Kim, Y.M., Park, D., Lee, D.S., Park, J.M. 2008. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment. Journal of hazardous materials, 152(3), 915-921.
King, E., Painter, H. 1986. Inhibition of respiration of activated sludge: variability and reproducibility of results. Toxicity Assessment, 1(1), 27-39.
Klotz, M.G., Alzerreca, J., Norton, J.M. 1997. A gene encoding a membrane protein exists upstream of the amoA/amoB genes in ammonia oxidizing bacteria: a third member of the amo operon? FEMS microbiology letters, 150(1), 65-73.
Koops, H., Böttcher, B., Möller, U., Pommerening-Röser, A., Stehr, G. 1991. Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. Journal of general Microbiology, 137(7), 1689-1699.
Koops, H.P., Pommerening‐Röser, A. 2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS microbiology ecology, 37(1), 1-9.
Kowalchuk, G.A., Stephen, J.R. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annual Reviews in Microbiology, 55(1), 485-529.
Lauchnor, E.G., Radniecki, T.S., Semprini, L. 2011. Inhibition and gene expression of Nitrosomonas europaea biofilms exposed to phenol and toluene. Biotechnology and bioengineering, 108(4), 750-757.
Limpiyakorn, T., Kurisu, F., Sakamoto, Y., Yagi, O. 2007. Effects of ammonium and nitrite on communities and populations of ammonia‐oxidizing bacteria in laboratory‐scale continuous‐flow reactors. FEMS microbiology ecology, 60(3), 501-512.
Limpiyakorn, T., Sonthiphand, P., Rongsayamanont, C., Polprasert, C. 2011. Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresource Technology, 102(4), 3694-3701.
Liu, W.-T., Marsh, T.L., Cheng, H., Forney, L.J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and environmental microbiology, 63(11), 4516-4522.
Livak, K.J., Flood, S., Marmaro, J., Giusti, W., Deetz, K. 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. Genome Research, 4(6), 357-362.
Madigan, M.T., Martinko, J.M., Parker, J., Brock, T.D. 1997. Biology of microorganisms.
Martens-Habbena, W., Berube, P.M., Urakawa, H., de La Torre, J.R., Stahl, D.A. 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461(7266), 976-979.
McCarty, G. 1999. Modes of action of nitrification inhibitors. Biology and Fertility of Soils, 29(1), 1-9.
McCarty, G., Bremner, J. 1986. Inhibition of nitrification in soil by acetylenic compounds. Soil Science Society of America Journal, 50(5), 1198-1201.
McCarty, G., Bremner, J. 1989. Inhibition of nitrification in soil by heterocyclic nitrogen compounds. Biology and Fertility of Soils, 8(3), 204-211.
Modolell, J., Davis, B.D. 1969. Mechanism of inhibition of ribosomes by streptomycin. Nature, 224, 345-348.
Morita, M., Kudo, N., Uemoto, H., Watanabe, A., Shinozaki, H. 2007. Protective Effect of Immobilized Ammonia Oxidizers and Phenol‐degrading Bacteria on Nitrification in Ammonia–and Phenol‐containing Wastewater. Engineering in Life Sciences, 7(6), 587-592.
Mrowiec, B., Suschka, J. 2010. Presence And Effects Of Aromatic Hydrocarbons On Sewage Treatment Efficiency. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy. pp. 20.
Nakagawa, T., Mori, K., Kato, C., Takahashi, R., Tokuyama, T. 2007. Distribution of cold-adapted ammonia-oxidizing microorganisms in the deep-ocean of the northeastern Japan Sea. Microbes and Environments, 22(4), 365-372.
Okano, Y., Hristova, K.R., Leutenegger, C.M., Jackson, L.E., Denison, R.F., Gebreyesus, B., Lebauer, D., Scow, K.M. 2004. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Applied and environmental microbiology, 70(2), 1008-1016.
Painter, H. 1970. A review of literature on inorganic nitrogen metabolism in microorganisms. Water Res, 4(6), 393-450.
Park, H.-D., Noguera, D.R. 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res, 38(14), 3275-3286.
Park, H.-D., Regan, J.M., Noguera, D.R. 2002. Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic Orbal processes. Water Science & Technology, 46(1), 273-280.
Park, H.-D., Wells, G.F., Bae, H., Criddle, C.S., Francis, C.A. 2006. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied and environmental microbiology, 72(8), 5643-5647.
Pietsch, J., Sacher, F., Schmidt, W., Brauch, H.-J. 2001. Polar nitrogen compounds and their behaviour in the drinking water treatment process. Water Res, 35(15), 3537-3544.
Prosser, I. 1989. Autotrophic Nitrification in Bacteria. ADV IN MICROBIAL PHYSIOLOGY VOL 30 APL, 30, 125.
Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M.C., Koops, H.-P., Wagner, M. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and environmental microbiology, 66(12), 5368-5382.
Radniecki, T.S., Dolan, M.E., Semprini, L. 2008. Physiological and transcriptional responses of Nitrosomonas europaea to toluene and benzene inhibition. Environmental science & technology, 42(11), 4093-4098.
Rotthauwe, J.-H., Witzel, K.-P., Liesack, W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and environmental microbiology, 63(12), 4704-4712.
Rozich, A.F., Castens, D.J. 1986. Inhibition kinetics of nitrification in continuous-flow reactors. Journal (Water Pollution Control Federation), 220-226.
Söderlund, R., Svensson, B. 1976. The global nitrogen cycle. Ecological Bulletins, 23-73.
Schoel, B., Welzel, M., Kaufmann, S.H. 1995. Quantification of protein in dilute and complex samples: modification of the bicinchoninic acid assay. Journal of biochemical and biophysical methods, 30(2), 199-206.
Schramm, A., Larsen, L.H., Revsbech, N.P., Ramsing, N.B., Amann, R., Schleifer, K.-H. 1996. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Applied and environmental microbiology, 62(12), 4641-4647.
Shammas, N.K. 1986. Interactions of temperature, pH, and biomass on the nitrification process. Journal (Water Pollution Control Federation), 52-59.
Sharma, B., Ahlert, R. 1977. Nitrification and nitrogen removal. Water Res, 11(10), 897-925.
Smith, C.J., Osborn, A.M. 2009. Advantages and limitations of quantitative PCR (Q‐PCR)‐based approaches in microbial ecology. FEMS microbiology ecology, 67(1), 6-20.
Smith, V.H., Tilman, G.D., Nekola, J.C. 1999. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1), 179-196.
Spotts, C.R., Stanier, R. 1961. Mechanism of streptomycin action on bacteria: a unitary hypothesis. Nature, 192, 633-637.
Standard methods for the examination of water and wastewater (1975) 14th Edition. American Public Health Association.
Stafford, D. 1974. The effect of phenols and heterocyclic bases on nitrification in activated sludges. Journal of applied microbiology, 37(1), 75-82.
Stahl, D.A., de la Torre, J.R. 2012. Physiology and diversity of ammonia-oxidizing archaea. Annual review of microbiology, 66, 83-101.
Surmacz-Gorska, J., Gernaey, K., Demuynck, C., Vanrolleghem, P., Verstraete, W. 1996. Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements. Water Res, 30(5), 1228-1236.
Surmacz-Gorska, J., Gernaey, K., Demuynck, C., Vanrolleghem, P., Verstraete, W. 1995. Nitrification process control in activated sludge using oxygen uptake rate measurements. Environmental technology, 16(6), 569-577.
Sutton, P.M., Bridle, T.R., Bedford, W.K., Arnold, J. 1981. Nitrification and denitrification of an industrial wastewater. Journal (Water Pollution Control Federation), 176-184.
Suwa, Y., Imamura, Y., Suzuki, T., Tashiro, T., Urushigawa, Y. 1994. Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Res, 28(7), 1523-1532.
Tchobanoglous, G., Burton, F.L., Stensel, H.D. 2003. Wastewater engineering: treatment and reuse. Metcalf & Eddy. Inc., McGraw-Hill, New York.
Tomlinson, T., Boon, A., Trotman, C. 1966. Inhibition of nitrification in the activated sludge process of sewage disposal. Journal of applied microbiology, 29(2), 266-291.
Tourna, M., Stieglmeier, M., Spang, A., Könneke, M., Schintlmeister, A., Urich, T., Engel, M., Schloter, M., Wagner, M., Richter, A. 2011. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences, 108(20), 8420-8425.
Townsend, A.R., Howarth, R.W., Bazzaz, F.A., Booth, M.S., Cleveland, C.C., Collinge, S.K., Dobson, A.P., Epstein, P.R., Holland, E.A., Keeney, D.R. 2003. Human health effects of a changing global nitrogen cycle. Frontiers in Ecology and the Environment, 1(5), 240-246.
Trimmer, M., Nicholls, J.C., Deflandre, B. 2003. Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom. Applied and environmental microbiology, 69(11), 6447-6454.
Tyagi, S., Bratu, D.P., Kramer, F.R. 1998. Multicolor molecular beacons for allele discrimination. Nature biotechnology, 16(1), 49-53.
Urakawa, H., Tajima, Y., Numata, Y., Tsuneda, S. 2008. Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems. Applied and environmental microbiology, 74(3), 894-900.
USEPA, M. 1993. Nitrogen Control (1993), Office of Research and Development. EPA/625/R-93/010, Washington, DC.
Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. science, 304(5667), 66-74.
Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G. 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological applications, 7(3), 737-750.
Watson, J.D. 1970. Molecular biology of the gene. Molecular biology of the gene.(2nd edn).
Wild Jr, H.E., Sawyer, C.N., McMahon, T.C. 1971. Factors affecting nitrification kinetics. Journal (Water Pollution Control Federation), 1845-1854.
Winogradsky, S. 1892. Contributions a la morphologie des organismes de la nitrification.
Wood, L., Hurley, B., Matthews, P. 1981. Some observations on the biochemistry and inhibition of nitrification. Water Res, 15(5), 543-551.
Wu, Y.-J., Whang, L.-M., Fukushima, T., Chang, S.-H. 2012. Responses of ammonia-oxidizing archaeal and betaproteobacterial populations to wastewater salinity in a full-scale municipal wastewater treatment plant. Journal of bioscience and bioengineering.
Wuchter, C., Abbas, B., Coolen, M.J., Herfort, L., van Bleijswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G.J., Middelburg, J.J. 2006. Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences, 103(33), 12317-12322.
You, J., Das, A., Dolan, E.M., Hu, Z. 2009. Ammonia-oxidizing archaea involved in nitrogen removal. Water Res, 43(7), 1801-1809.
Zepeda, A., Texier, A.-C., Gomez, J. 2007. Batch nitrifying cultures in presence of mixtures of benzene, toluene, and m-xylene. Environmental technology, 28(3), 355-360.
Zepeda, A., Texier, A.-C., Razo-Flores, E., Gomez, J. 2006. Kinetic and metabolic study of benzene, toluene and m-xylene in nitrifying batch cultures. Water Res, 40(8), 1643-1649.
Zhang, S.-H., Francis III, L. 2012. Effect of Penicillin on Nitrite-Oxidizing Bacteria in Activated Sludge. Applied biochemistry and biotechnology, 166(8), 1983-1990.
Zhang, T., Jin, T., Yan, Q., Shao, M., Wells, G., Criddle, C., P Fang, H. 2009. Occurrence of ammonia‐oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. Journal of applied microbiology, 107(3), 970-977.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top