|
1.H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials 9, 205-213 (2010). 2.J. Zhu, Z. Yu, S. Fan, Y. Cui, “Nanostructured photon management for high performance solar cells,” Materials Science and Engineering: R: Reports 70,330-340 (2010). 3.T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95, 1527-1536 (2011). 4.B. A. Andersson, “Materials availability for large-scale thin-film photovoltaics,” Prog. Photovolt: Res. Appl. 8, 61–76 (2000). 5.R. E. I. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and Device Technology, (Kluwer Academic Publishers, Norwell, Mass., 1998). 6.D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977). 7.J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 41-42, 87-99 (1996). 8.M. A. Green, Solar Cells: Operating Principles, Technology and System Applications, (Univ. New South Wales, Australia, Sydney, 1998). 9.H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8, 491–493 (1983). 10.E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electr. Dev. 29, 300–305 (1982). 11.S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007). 12.H. R. Stuart, and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996). 13.H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle- enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998). 14.K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008). 15.D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006). 16.D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improvedperformance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008). 17.P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93, 113108 (2008). 18.D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). 19.B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519–7526 (2004). 20.T. Kume, S. Hayashi, H. Ohkuma, K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34, 6448–6451 (1995). 21.M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007). 22.M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. C. 61, 97–105 (2000). 23.A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008). 24.R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91, 191111 (2007). 25.N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008). 26.C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008). 27.C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008). 28.S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008). 29.J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18 (3), 2682–2694 (2010). 30.L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, and M. M. Koetse, “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett. 90, 143506 (2007). 31.J. A. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar plasmon metal waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model.” Phys. Rev. B 72, 075405 (2005). 32.J. A. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength- scale localization,” Phys. Rev. B 73, 035407 (2006). 33.F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009). 34.S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007). 35.V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Optics Express 18 (102), A237-A245 (2010). 36.H.Y. Lin, Y. Kuo, C.Y. Liao, C. C. Yang, and Y. W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Optics Express, Vol. 20, A104-A118 (2012). 37.M. Hack, M. Shur, “Physics of amorphous silicon alloy p–i–n solar cells, ” Journal of Applied Physics 58 (2), p. 997 (1985). 38.M. Hack and M. Shur, “Theoretical modeling of amorphous silicon-based alloy p-i-n solar cells,” J. Appl. Phys. 54 (10),(1983). 39.A. H. M. Shousha and M. A. EL-Kosheiry, “Computer simulation of amorphous MIS solar cells,” Renew Energy 11 (4), 4 (1997). 40.P. J. McElheny, J. K. Arch, H.-S Lin, and S.J. Fonash, “Range of validity of the surface-photovoltage diffusion length measurement: A computer simulation,” J. Appl. Phys. 64 (3), 1 (1988). 41.A Fantoni , M Vieira , J Cruz , R Schwarz and R Martins, “A two-dimensional numerical simulation of a non-uniformly illuminated amorphous silicon solar cell,” J Phys D 29, 3154 (1996). 42.Shockley W. and READ W. T., “Statistics of the Recombinations of Holes and Electrons,” Phys. Rev. 87, 835 (1952). 43.S. J. Fonash, Solar Cell Device Physics (Academic, New York, 1981) 44.D. L. Scharfetter and D. L. Gummel, “Large signal analysis of a Silicon Read diode oscillator,” IEEE Transaction on Electron Devices, ED-16, 64-77 (1969).
|