跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖正淵
研究生(外文):Cheng-Yuan Liao
論文名稱:含金屬光柵結構的非晶矽薄膜太陽電池中載子傳輸之模擬研究
論文名稱(外文):Numerical Simulation on Carrier Transport in a Thin-Film Amorphous Silicon Solar Cell with a Metal Grating
指導教授:江衍偉江衍偉引用關係
指導教授(外文):Yean-Woei Kiang
口試委員:張宏鈞吳育任
口試日期:2012-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:65
中文關鍵詞:太陽電池吸收增加載子傳輸效率增加金屬光柵
外文關鍵詞:solar cellabsorption enhancementcarrier transportefficiency enhancementmetal grating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文係以數值模擬方式,對一具有金屬光柵結構的非晶矽薄膜太陽能電池,在已知其內部之載子產生率的情況下,探討其內部載子傳輸現象。此太陽能電池由三部分組成,由外而內,依序是作為表面電極之氧化銦錫透明導電層、非晶矽半導體層與作為底部電極的金屬銀光柵層。本文中非晶矽半導體內的載子傳輸為一個二維的數值問題,吾人藉由Gummel迭代法來求算出一組滿足Poisson方程式以及電子與電洞之連續方程式的解。在每次迭代運算過程中,我們並非一舉求算二維區間的解,而是將二維問題近似為有限個彼此有關聯的一維問題,再利用已設計好的一維模型來進行重複性的計算,以求得二維區間的解。為了評估此太陽能電池的性能,我們亦模擬了具有相同體積的平板型參考太陽能電池。模擬結果顯示:具有光柵結構的太陽能電池之能量轉換效率確有增加,相較於對應的參考太陽能電池,最大能量轉換效率可從5.93%提升至8.24%,亦即約有39%之相對提升。

The carrier transport of a thin-film amorphous silicon (a-Si) solar cell with a metal grating is numerically simulated, for a given generation rate in the solar cell. The solar cell structure consists of three parts: an ITO layer as the top contact, an a-Si layer and a metal Ag grating layer as the back contact. It is a two-dimensional problem to simulate the carrier transport in the a-Si region. Using the Gummel iteration method, we get the self-consistent solutions of the electron and hole continuity equations and the Poisson equation for the entire region of a-Si. At each iteration step, we solve the two-dimensional problem by repeatedly using the related one-dimensional model. In other words, the equations are not solved simultaneously in the two-dimensional region to save the memory and computer time. The simulated results reveal that the maximum efficiency of such a solar cell is enhanced, as compared with the reference flat solar cell of the same volume of a-Si. For the maximum efficiency, it can be increased from 5.93% to 8.24%, with a relative enhancement of about 39%.

Chapter 1 Introduction .........................................................................1
Chapter 2 A Thin-Film Amorphous Silicon Solar Cell with a Metal
Grating .................................................................................7
2.1 Geometry of the solar cell .............................................................7
2.2 The absorption property of the solar cell ......................................8
Chapter 3 One-Dimensional Numerical Model ................................10
3.1 Basic device equations ................................................................10
3.1.1 Poisson equation and carrier continuity equations ...........10
3.1.2 Charge distribution and recombination rate ......................11
3.1.3 Generation rate ..................................................................12
3.2 Boundary conditions ...................................................................12
3.3 Normalization factors .................................................................13
3.4 Numerical simulation ..................................................................14
3.4.1 Simulation details for Poisson equation ............................15
3.4.2 Simulation details for carrier continuity equations ...........16
3.5 Initial guesses and iteration process ...........................................17
Chapter 4 Two-Dimensional Numerical Model ................................20
4.1 Basic device equations ................................................................20
4.2 Generation rate and approximation of curved surface ................20
4.3 Boundary conditions ...................................................................21
4.4 Numerical algorithms .................................................................23
4.4.1 Simulation details for a flat solar cell ...............................23
4.4.2 Simulation details for a solar cell with a metal grating ....25
4.5 Initial guesses and iteration process ...........................................27
Chapter 5 Numerical Results .............................................................32
5.1 Numerical results for 1D model .................................................32
5.2 Numerical results for 2D model .................................................35
5.2.1 Numerical results for a flat solar cell ................................35
5.2.2 Numerical results for a solar cell with a metal grating .....37
Chapter 6 Conclusions ........................................................................60

References ...............................................................................................61



1.H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials 9, 205-213 (2010).
2.J. Zhu, Z. Yu, S. Fan, Y. Cui, “Nanostructured photon management for high performance solar cells,” Materials Science and Engineering: R: Reports 70,330-340 (2010).
3.T. Dittrich, A. Belaidi, and A. Ennaoui, “Concepts of inorganic solid-state nanostructured solar cells,” Sol. Energy Mater. Sol. Cells 95, 1527-1536 (2011).
4.B. A. Andersson, “Materials availability for large-scale thin-film photovoltaics,” Prog. Photovolt: Res. Appl. 8, 61–76 (2000).
5.R. E. I. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials, and Device Technology, (Kluwer Academic Publishers, Norwell, Mass., 1998).
6.D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
7.J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, “24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 41-42, 87-99 (1996).
8.M. A. Green, Solar Cells: Operating Principles, Technology and System Applications, (Univ. New South Wales, Australia, Sydney, 1998).
9.H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical absorption in textured semiconductor films,” Opt. Lett. 8, 491–493 (1983).
10.E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electr. Dev. 29, 300–305 (1982).
11.S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
12.H. R. Stuart, and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
13.H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle- enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
14.K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett. 93, 121904 (2008).
15.D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
16.D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, “Nanoparticle-induced light scattering for improvedperformance of quantum-well solar cells,” Appl. Phys. Lett. 93, 091107 (2008).
17.P. Matheu, S. H. Lim, D. Derkacs, C. McPheeters, and E. T. Yu, “Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices,” Appl. Phys. Lett. 93, 113108 (2008).
18.D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
19.B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519–7526 (2004).
20.T. Kume, S. Hayashi, H. Ohkuma, K. Yamamoto, “Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons,” Jpn. J. Appl. Phys. 34, 6448–6451 (1995).
21.M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys. 102, 093713 (2007).
22.M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. C. 61, 97–105 (2000).
23.A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
24.R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91, 191111 (2007).
25.N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett. 93, 123308 (2008).
26.C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
27.C. Hagglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
28.S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93, 073307 (2008).
29.J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18 (3), 2682–2694 (2010).
30.L. H. Slooff, S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen, and M. M. Koetse, “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett. 90, 143506 (2007).
31.J. A. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar plasmon metal waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model.” Phys. Rev. B 72, 075405 (2005).
32.J. A. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength- scale localization,” Phys. Rev. B 73, 035407 (2006).
33.F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
34.S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309 (2007).
35.V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Optics Express 18 (102), A237-A245 (2010).
36.H.Y. Lin, Y. Kuo, C.Y. Liao, C. C. Yang, and Y. W. Kiang, “Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures,” Optics Express, Vol. 20, A104-A118 (2012).
37.M. Hack, M. Shur, “Physics of amorphous silicon alloy p–i–n solar cells, ” Journal of Applied Physics 58 (2), p. 997 (1985).
38.M. Hack and M. Shur, “Theoretical modeling of amorphous silicon-based alloy p-i-n solar cells,” J. Appl. Phys. 54 (10),(1983).
39.A. H. M. Shousha and M. A. EL-Kosheiry, “Computer simulation of amorphous MIS solar cells,” Renew Energy 11 (4), 4 (1997).
40.P. J. McElheny, J. K. Arch, H.-S Lin, and S.J. Fonash, “Range of validity of the surface-photovoltage diffusion length measurement: A computer simulation,” J. Appl. Phys. 64 (3), 1 (1988).
41.A Fantoni , M Vieira , J Cruz , R Schwarz and R Martins, “A two-dimensional numerical simulation of a non-uniformly illuminated amorphous silicon solar cell,” J Phys D 29, 3154 (1996).
42.Shockley W. and READ W. T., “Statistics of the Recombinations of Holes and Electrons,” Phys. Rev. 87, 835 (1952).
43.S. J. Fonash, Solar Cell Device Physics (Academic, New York, 1981)
44.D. L. Scharfetter and D. L. Gummel, “Large signal analysis of a Silicon Read diode oscillator,” IEEE Transaction on Electron Devices, ED-16, 64-77 (1969).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top