|
[1] M. Gori, A. Tesi, “On The Problem Of Local Minima In Back-propagation,” IEEE Transactions. Pattern Anal. Mach. Intell (1992). [2] K.S. Narendra, L.G. Kraft, L. Ungar, S.T. Venkataraman, “Neural Networks for Identification and Control, 33 IEEE Constabilizer Applications Using Participation Factors,” IEEE Proc. 134 ference on Decision and Control, Workshop no. 6, pp. 12-13, December (1994). [3] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, “Learning Internal Representation by Error Propagation,” Parallel Distributed Processing, Vol. 1 (1986). [4] R. Grino, G. Cembrano, and C. Torras, “Nonlinear System Identification Using Additive Dynamic Neural Networks-two On-line Approaches,” IEEE Transactions on Circuits and Systems, Part I: Fundamental Theory and Applications, Vol. 47, No. 2, pp. 150-165, February (2000). [5] J.C. Patra, R.N. Pal, B.N. Chatterji, and G. Panda, “Identification of Nonlinear Dynamic Systems Using Functional Link Artificial Neural Networks,” IEEE Transactions on Systems, Man and Cybernetics, Part B, Vol. 29, No. 2, April (1999). [6] J.S.Albus, A New Approach ManipulatorControl: The Cerebellar Model Articulation Controller(CMAC), Journal of Dynamic Systems, Measurement and Control, Transaction of ASME, 220-227 (97) (1975). [7] J.S. Albus, Data Storage in the Cerebellar Model Articulation Controller(CMAC),Journal of Dynamic Systems,Measurement and Control ,Transaction of ASME ,228-233, (97) (1975). [8] W.Thomas Miller,Filson H.Glanz and L.Gordon Kraf,"CMAC :An Associative Neural Network Alternative to Backpropagation,"Proceeding of the IEEE,Vol.78,No.10,pp.1561-1567 (1990). [9] Miller,T.W.,Glanz,F.H.,and Kraft,L.G, "Application of a General Learning Algorithm to the Control of Robotics Manipulators,"The International Journal of Robotics Research,Vol.,6,No.2,pp.84-98 (1987). [10] Chun-Shin Lin and Hyongsuk Kim, " CMAC-Based Adaptive CriticSelf-Learning Control, "IEEE Transactions on Neural Network,Vol.2,No.5,pp.530-535 (1996). [11] Chun-Shin Lin and Hyongsuk Kim, "Selection of Learning Parameters for CMAC-Based Adaptive Critic Learning, "IEEE Transactions on Neural Network,Vol.6,No.3,pp.642-647 (1996). [12] Karr,C.L., "Applying Genetic to fuzzy logic ,"AI Expert ,pp.38-43,March (1991). [13] Neil E.Cotter and Thierry J.Guillerm, "The CMAC and a Theorem of Kolmogorov, "Neural Network ,Vol.5 , pp.221-228 (1991). [14] P.C.Parks and J.Militizer, "A Comparison of Five Algorithm for the Training of CMAC Memories for Learning Control Systems, "Vol.28,No.5,pp.1027-1035 (1992). [15] Yiu-fai Wong and Athanasions Sideris, "Learning Convergence in the Model Articulation Controller, "IEEE Transactions on Neural Network,Vol.3,No.1,pp.115-121 (1992). [16] Neil E. Cotter and Omar N. Main, "A Pulsed Neural Network Capable of Universal Approximation, "IEEE Transactions on Neural Network,Vol,3,No.2,pp.308-314 (1992). [17] Ching-Tsan Chiang and Chun-Shin Lin, "CMAC with General Basis Functions, "Neural Networks,Vol.9,No.7, pp.1199-1211 (1996). [18] S.H.Lane, D.A.Handelman, J.J.Gelfand, "Theory and Development of Higher-Order CMAC Neural Network, " IEEE Contr.Syst.,Vol,12,pp.23-30 (1992). [19] C.T.Chiang and C.S.Lin, "Integration of CMAC and Radial Basis Function Techniques, "IEEE International Conference on Intelligent Systems for the 21st , Vol4 , pp3263-3268 (1995). [20] Tao, G. and Kokotović, P.V. "Adaptive control of plants with unknow dead-zones", IEEE Transactions on Automatic Control, Vol. 39, No. 1, pp. 59-68 (1994). [21] Wang, X.-S., Su, C.-Y., and Hong, H. "Robust adaptive control of a class of nonlinear systems with unknow dead-zone", Automatica, Vol. 40, No. 3, pp. 407-413 (2004). [22] Zhou, J., Wen, C., and Zhang, Y. "Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity", IEEE Transactions on Automatic Control, Vol. 51, No. 3, pp. 504-511 (2006). [23] Ibrir, S., Xie, W.F., and Su, C.-Y. "Adaptive tracking of nonlinear systems with nonsymmetric dead-zone input", Automatica, Vol. 43, No. 3, pp. 522-530 (2007). [24] Tsai, C.-H. and Chuang, H.-T. "Deadzone compensation based on constrained RBF neural network", Journal of The Franklin Institute, Vol.341, No.4, pp. 361-374 (2004). [25] Zhang, T.-P. and Ge, S.S., "Adaptive neural control of MIMO nonlinear state timevarying delay systems with unknown dead-zones and gain signs", Automatica, Vol. 43, No. 6, pp. 1021-1033 (2007). [26] Corradini, M.L. and Orlando, G, "Robust stabilization of nonlinear uncertain plants with backlash or dead zone in the actuator", IEEE Transactions on Control Systems Technology, Vol. 10, No. 1, pp. 158-166 (2002). [27] Shyu, K.-K., Liu, W.-J., and Hsu, K.-C., "Design of large-scale time-delayed systems with dead-zone input via variable structure control", Automatica, Vol. 41, No. 7, pp. 1239-1246 (2005). [28] Kim, J.-H., Park, J.-H., Lee, S.-W., and Chong, E.K.P., "A two-layered fuzzy logic controller for systems with deadzones", IEEE Transactions on Industrial Electronics, Vol. 41, No. 2, pp. 155-162 (1994). [29] Oh, S.-Y. and Park, D.-J., "Design of new adaptive fuzzy logic controller for nonlinear plants with unknown or time-varying dead zones", IEEE Transactions on Fuzzy Systems, Vol. 6, No. 4, pp. 482-491 (1998). [30] Šelmić, R.R. and Lewis, F.L., "Deadzone compensation in motion control systems using neural networks",IEEE Transactions on Automatic Control, Vol. 45, No. 4, pp. 602-613 (2000). [31] Zhou, J., Wen, C., and Zhang, Y., "Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity", IEEE Transactions on Automatic Control, Vol. 51, No. 3, pp. 504-511 (2006). [32] Lewis, F.L., Tim, W.K., Wang, L.-Z., and Li, Z.X., "Deadzone compensation in motion control systems using adaptive fuzzy logic control", IEEE Transactions on Control Systems Technology, Vol. 7, No. 6, pp. 731-742 (1999). [33] H. Cho, E.W. Bai, Convergence results for an adaptive deadzone inverse, Int. J.A daptive .Control Signal Processing. 451–466 (1998). [34] G. Tao, P.V. Kokotivic, Adaptive control of plants with unknown deadzones, IEEE T rans . Autom . Control 39 (1) 59–68 (1994). [35] F.L. Lewis, W.K. Tim, L.Z. Wang, Z.X.Li, Deadzone compensation in motion control systems using adaptive fuzzy logic control, IEEE Control Syst.Technol. 7 (6) 731–742 (1999). [36] R.R. Selmic, F.L. Lewis, Deadzone compensation in motion control systems using neural networks, IEEE Trans.Autom. Control 45 (4) 602–613 (2000). [37] T. Knohl, H. Unbehauen, Adaptive position control of electrohydraulic servo systems using ANN, Mechatronics 10,127–173 (2000). [38] C.H. Tsai, H.T. Chuang, Deadzone compensation based on constrained RBF neural network, Journal of the Franklin Institute 341,361-374 (2004). [39] 韓曾晉,適應控制系統,台北:科技圖書股份有限公司(2002)。 [40] 張力祥,“可微分小腦模型用於函數逼近及馬達控制”,中原大學電機工程學系碩士論文 (2003)。
|