跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張永昆
研究生(外文):Yung-Kun Chang
論文名稱:對Rhodosporidium toruloides D型胺基酸氧化酶過氧化氫耐受性的改善
論文名稱(外文):IMPROVEMENT IN TOLERANCE TO HYDROGEN PEROXIDE OF RHODOSPORIDIUM TORULOIDES D-AMINO ACID OXIDASE
指導教授:官宜靜
指導教授(外文):I-Ching Kuan
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:104
中文關鍵詞:點突變D型胺基酸氧化酉每過氧化氫
外文關鍵詞:SOEingD-amino acid oxidaseH2O2
相關次數:
  • 被引用被引用:3
  • 點閱點閱:189
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
D-amino acid oxidase (DAO)為工業上應用於是製造頭孢菌素類抗生素之先驅物7-aminocephalosporanic acid的重要酵素。DAO在轉化受質後,會產生副產物H2O2,將其某些胺基酸殘基氧化而使之失活。由於 methionine的氧化常於蛋白質傷害中扮演重要角色,因此本研究藉SOEing (splicing by overlapped extension)方法進行點突變,將Rhodosporidium toruloides和Candida boidinii DAO上的methionine residues轉變成leucine residues,以提高其對H2O2之耐受性而延長作用能力。
以單點突變產生R.. toruloides DAO的突變蛋白M59L 、M88L和M213L以及C. boidinii DAO的突變蛋白 M151L和M221L。經檢測R.. toruloides DAO的三個突變蛋白的比活性依次為101.9、84.1和106.7 U/mg,其中M59L和M213L的比活性較wild type DAO的98.6 U/mg為高。此外,酵素動力學分析顯示R.. toruloides M59L以 D-alanine為受質時的kcat/Km值達39.9 s-1 mM-1,高於wild type DAO的kcat/Km值35.7 s-1 mM-1。另方面,C. boidinii突變蛋白卻皆未檢測出任何活性。
H2O2耐受性的分析顯示,R.. toruloides DAO的三個突變蛋白中,M59L和M213L對H2O2耐受性較wild type DAO略佳,M213L又略優於M59L。以100 mM H2O2處理20分鐘後,M59L、M213L和wild type DAO分別殘餘7.88%、12.36%和0.66%的活性。
D-amino acid oxidase (DAO, EC1.4.3.3) is a key enzyme for the production of 7-aminocephalosporanic acid, the precursor of semi-synthetic cepham antibiotics. It was found to be inactivated by H2O2 generated from its own catalysis. Methionine oxidation usually plays an important role in protein damage. Therefore, using the SOEing (splicing by overlapped extension) method, the methionine residues in Rhodosporidium toruloides and Candida boidinii DAO were replaced by leucine residues to improve their resistance to H2O2.
Three R. toruloides mutant DAOs M59L, M88L, and M213L as well as two C. boidinii mutant DAOs were produced. The specific activities of R. toruloides mutant DAOs M59L, M88L, and M213L were 101.9, 84.1, and 106.7 U/mg, respectively. The former two were higher than that of wild type DAO (98.6 U/mg). The kinetic analysis also showed that M59L had a kcat/Km of 39.9 s-1 mM-1 which was better than that of wild type DAO (35.7 s-1 mM-1). On the other hand, C. boidinii mutant DAOs didn’t show any detectable activity.
The resistance to H2O2 of M59L and M213L were slightly better than that of wild type DAO. The treatment with 100 mM H2O2 for 20 minutes resulted in a decrease in the specific activities of M59L, M213L, and wild type DAO by 7.88, 12.36 and 0.66%, respectively.
誌謝 ……………………………………...…………………..………... I
中文摘要 ………………………………...…….……………..……..... II
英文摘要 …………………………………………………...……..….. IV
目錄 ………………………………………………………..…………. VI
圖、表索引 …………………………………………………..…..……. IX
第一章 前言 ………………………………….……………………… 1
1.1. D型胺基酸氧化酵素 ….……………...……………….………. 1
1.1.1. D型胺基酸氧化酵素之催化反應 …………………………. 2
1.1.2. D型胺基酸氧化酵素的生理功能 …………………………. 3
1.1.3. D型胺基酸氧化酵素的生化特性 …………………………. 5
1.1.4. D型胺基酸氧化酵素之應用 ……..…………………………. 8
1.2. D型胺基酸氧化酵素的異源表現 ………….……………....... 12
1.3. 利用基因工程改善酵素特性 ………………………………... 15
1.3.1. 酵素工程 ……….................................................................. 15
1.3.2. 與DAO相關的蛋白質工程的研究 ……………………. 20
1.4. 論文研究目的 ……………………………….……………….. 21
第二章 實驗材料與方法 …………………….…………………….. 23
2.1. 實驗材料 ……………….………...…….................................. 23
2.1.1. 基因和菌種 ………….……………….…...…….………... 23
2.1.2. 實驗儀器 ……………………….……..…………….......... 23
2.1.3. 培養基及藥品 ………….………………………….……... 24
2.1.4. 酵素 …………………………………....………………….. 24
2.1.5. 質體 …….………………………………………….……... 25
2.1.6. 引子 ……………………..…………………..……..……... 26
2.2. 實驗方法 ……..…………......................................................... 26
2.2.1. DAO cDNA基因在E. coli中的誘導表現 ………….…... 26
2.2.1.1. DAO 的誘導表現 ….……………………...………….. 26
2.2.1.2. DAO的純化 …………………………………………... 27
2.2.1.3. DAO活性的測定 ……………………………………... 29
2.2.1.3.1. H2O2 產量的測定 ………………………………… 29
2.2.1.3.2. Pyruvic acid 產量的測定 ……………………….... 30
2.2.1.4. DAO之定量 ……………………………….…………. 30
2.2.1.4.1. 以ε (extinction coefficient)定量 ..……………...... 30
2.2.1.4.2. 以Bradford Assay定量 ………………………..….. 31
2.2.1.5. SDS-PAGE …………………………...……..………… 31
2.2.2. DAO cDNA基因的定點突變 ………………….………... 33
2.2.3. Escherichia coli的轉化作用(transformation) …………… 35
2.2.4. 少量質體DNA的抽取 ………………………………….. 35
2.2.5. Competent cell 之製備 ………………………………….. 36
2.2.6. DAO 與 DAO突變株對H2O2耐受性的表現 ………… 37
2.2.7. DAO 與 DAO突變株的酵素動力學分析 …………….. 37
2.2.8. DAO的DAN shuffling ………………………………….. 37
2.2.8.1. DNA random fragments之製備 …………………….... 37
2.2.8.2. DAO之基因重組 .......................................................... 39
2.2.8.3. Shuffled DAO基因的表現與篩選 …………………… 40
第三章 實驗結果與討論 ……………………………….………….. 41
3.1. R. toruloides和C. boidinii DAO cDNA基因的定點突變 ….. 41
3.2. T. variabilis、R. toruloides和C. boidinii DAO wild type和突變蛋白基因於E. coli之表現 ………………………….………….… 42
3.2.1. R. toruloides wild type DAO和突變蛋白之表現 ............... 42
3.2.2. C. boidinii wild type DAO和突變蛋白之表現 .................. 42
3.2.3. T. variabilis wild type DAO和突變蛋白之表現 ................ 43
3.2.4. Wild type DAO和突變蛋白比活性的比較 ....................... 43
3.3. Wild type DAO 和突變蛋白的酵素動力學 ………………. 45
3.4. Wile type DAO 和突變蛋白的H2O2耐受性比較 …………. 46
3.4.1. Wile type DAO的H2O2耐受性 ………………..……….. 47
3.4.2. 突變DAO對H2O2的耐受性 ……….………………… .. 47
3.5. DAO基因的DNA shuffline …………………………………. 49
3.5.1. DAO基因之重組 …………………………………….…….. 49
3.5.2. Shuffled DAO基因的表現與篩選 ………………………… 49
第四章 結論 ……………………………………………………. … 51
第五章 圖、表 ……………………...……….………………..…… 53
第六章 參考文獻 ………………………………………………….. 82
第七章 附錄 ……………………………………………………….. 97

圖、表索引
表1. 本研究用於增幅DAO cDNA基因的引子 …….…...……… 53
表2. 本研究用於產生點突變的引子 …………………………….. 54
表3. 不同來源DAO的受質專一性比較 .……………….………. 55
表4. R. toruloides、C. boidinii和T. variabilis DAO和突變蛋白的比活性 ….…...…………………….………………………………. 56
表5. R. toruloides、C. boidinii和T. variabilis DAO和突變蛋白的酵素
動力學參數 ………………………………………………….. 57
表6. R. toruloides、C. boidinii和T. variabilis DAO和突變蛋白的H2O2耐受性 ……………………………………………………..… 58
圖1. DAO催化機制 …………. ………………………….………. 59
圖2. D-serine與NO的調控機制 ………………..……………….. 60
圖3. 不同來源DAO胺基酸序列的alignment。conseved amino acid residues以黑底標示 ………………………………………… 61
圖4. DAO於生產動物飼料添加劑之應用 …………………….... 62
圖5. 由cephalosporin C生產7-ACA的酵素反應步驟 …….….. 63
圖6. 以DNA shuffling的方式重組DNA ……………………..… 64
圖7. Family DNA shuffling …………………..…………………… 65
圖8 SOEing 定點突變的操作原理 ………………………..…….. 66
圖9. pET23am的結構圖 ……..……………………….…………… 67
圖10. H2O2標準曲線圖 ……..………………………………..…… 68
圖11. 2.4-dinitrophenylhydrazine的化學結構式(a)以及與酮類的反應式(b) …………………………………………………………… 69
圖12. Pyruvate標準曲線圖 ………………………………………. 70
圖13. BSA標準曲線圖 ……………………………….…………... 71
圖14. R. toruloides wild type DAO和突變蛋白的誘導表現 ...….. 72
圖15. C. boidinii wild type DAO的表現 ………..…….…….....… 73
圖16. T. variabiliswild type DAO和突變蛋白的誘導表現 ……... 74
圖17. R. toruloides DAO 3D結構中之Met殘基位置 ...………… 75
圖18. Wild type R. toruloides (a)、C. boidinii (b)和T. variabilis (c) DAO的H2O2耐受性 …………………………………………….. 76
圖19. R. toruloides M59L的H2O2耐受性 …………....….…….... 77
圖20. R. toruloides M88L的H2O2耐受性 ……………….……… 78
圖21. R. toruloides M213L的H2O2耐受性 …….……………….. 79
圖22. T. variabilis M156L的H2O2耐受性 ……………….……… 80
圖23. 經DNA shuffling重組產生DAO基因片段的電泳分析 …. 81


附錄索引
附錄1. R. toruloides wild type DAO的1/S vs. 1/V的雙倒數圖現 97
附錄2. R. toruloides M59L DAO的1/S vs 1/V的雙倒數圖 …...... 98
附錄3. R. toruloides M88L DAO的1/S vs. 1/V的雙倒數圖 ……. 99
附錄4. R. toruloides M213L DAO的1/S vs. 1/V的雙倒數圖 …. 100
附錄5. C. boidinii wild type DAO的1/S vs. 1/V的雙倒數圖 …. 101
附錄6. T. variabilis wild type DAO的1/S vs. 1/V的雙倒數圖 ... 102
附錄7. T. variabilis M156L的1/S vs. 1/V的雙倒數圖 ………… 103
吳明峰,2003,D型胺基酸氧化酵素基因在Escherichia coli的表現,碩士論文,生物工程研究所,大同大學,臺北。
吳東嶺,2003,D型胺基酸氧化酵素之蛋白質工程,碩士論文,生物工程研究所,大同大學,臺北。
駱彥甫,2003,Candida boidinii D型胺基酸氧化酵素在大腸桿菌中的異源表現研究,碩士論文,生物工程研究所,大同大學,臺北。
Alonso, J., J. L. Barredo, B. Dize, E. Mellado, F. Salto, J. L. Garcia, and E. Cortes. 1998. D-amino acid oxidase gene from Rhodotorula gracilis (Rhodosporidium toruloides) ATCC 26217. Microbiology. 144:1095-1101.
Angermuller, S. and H. D. Fahimi. 1988. Heterogeneous staining of D-amino acid oxidase in peroxisomes of rat liver and kidney. Histochem. 88:277-285.
Arrizubieta, M. J., and Polaina, J. 2000. Increased thermal resistance and modification of the catalytic properties of a beta-glucosidase by random mutagenesis and in vitro recombination. J Biol Chem. 275(37):28843-28848.
Bakke, M. and N. Kajiyama. 2004. Improvement in thermal stability and substrate binding of pig kidney D-amino acid oxidase by chemical modification. Appl. Biochem. Biotechnol. 112: 123-131.
Berg, C. P., and F. A. Rodden. 1976. Purification of D-amino acid oxidase from Trigonopsis variabilis. Anal. Biochem. 71:214-222.
Betancor, L., A. Hidalgo, G. Fernandez-Lorente, C. Mateo, V. Rodriguez, M. Fuentes, F. Lopez-Gallego, R. Fernandez-Lafuente and J. M. Guisan. 2003. Use of phycicochemical tools to determine the choice of optimal enzyme: stabilization of D-amino acid oxidase. Biotechnol. Prog. 19: 784-788.
Brachet, P. and A. Puigeserver. 1992. Regulation differences for the D-amino acid oxidase-catalase oxidation of D-methionine in chicken small intestine. Comp. Physiol. 101B:509-511.
Brodelius, P., K. Nisson and K. Mosbach. 1981. Production of alpha-Keto acid part I immobilized cells of Trigonopsis variabilis containing D-amino acid oxidase. Appl. Biochem. Biotechnol. 6: 293-308.
Bruhlmann, F., and W. Chen. 1998. Tuning biphenyl dioxygenase for extended substrate specificity. Biotechnol. Bioeng. 63:544-551.
Buto, S., L. Pollegioni, L. D’Agiuro and M. S. Pilone. 1994. Evaluation of D-amino acid oxidase from Rhodotorula gracilis for the production of α-keto acid:a reactor system. Biotechnol. Bioeng. 44:1288-1294.
Chen, J. T., S. Y. Lin, and H. Tasi. 1991. Enzymatic and chemical conversions of cephalosporin C to 7-(glutarylamido) cephalosporanic acid. J. Biotech. 19:203-210.
Chien, L. J., J. M. Wu, I. C. Kuan and C. K. Lee. 2004. Coexpression of Vitreoscialla hemoglobin reduces the toxic effect of expression of D-amino acid oxidase in E. coli. Biotechnol. Prog. 20:1359-1365.
Christians, F. C., L. Scapozza, A. Crameri, G. Folkers, and W. P. C. Stemmer. 1999. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling. Nat. Biotechnol. 17:259-264.
Chu, S. T., C. C. Chu, C. C. Tseng, and H. Y. Chen. 1993. Met- 8 of the β1-bungarotoxin phospholipase A2 subunit is essential for the phospholipase A2-independent neurotoxic effect. Biochem. J. 295: 713-718.
Colon, H. D., J. Baqai, K. Baker, Y. Q. Shen, B. L. Wong, R. Noiles and C.W. Rausch. 1995. Two-step immobilized enzyme conversion of cephalosporin C to 7-aminocephalosporanic acid. Biotechnol. Bioeng. 46: 510-513.
Crameri, A., E. Whitehorn, E. Tate and W. P. C. Stemmer. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14:315-319.
D’Acunzo, A., E. de Alteriis, F. Maurano, E. Battistel and P. Parascandola. 1996. D-amino acid oxidase from Trigonopsis variabilis:immobilization of whole cells in natural polymeric gels for glutaryl-7-aminocephalosporanic acid production. J. Ferment. Bioeng. 81:138-142.
De la Mata, I., F. Ramon, V. Obregon, M. P. Castillon and C. Acebal. 2000. Effecct of hydrogen peroxide on D-amino acid oxidase from Rhodotorula gracilis. Enzyme Microb. Technol. 27:234-239.
Dominguez, R., B. Serra, A. J. Reviejo, and J. M. Pingarron. 2001. Chiral analysis of amino acids using electrochemical composite bienzyme biosensors. Anal. Biochem. 298(2):275-282.
Fang, J., T. Sawa, T. Akaike and H. Maeda. 2002. Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide. Cancer. Res. 62(11):3138-43.
Fernandaz-Lafuente, R., V. Rodriguez and J. M. Guisan. 1998. The coimmobilization D-amino acid oxidase and catalase enables the quantitative transformation of D-amino acid (D-phenylalanine) into α-keto acid (phenylpyruvic acid). Enzyme Microb. Technol. 23:28-33.
Fukui, K., K. Watanabe, T. Shibata and Y. Miyake. 1987. Molecular cloning and sequence analysis of cDNAs encoding porcine kidney D-amino acid oxidase. Biochem. 26(12):3612-8.
Harayama, S. 1998. Artificial evolution by DNA shuffling. Trends Biotechnol. 16:76-82.
He, Z. Y., Q. L. Jiang, Y. X. Chen, L. M. Wen, Y. C. Yao, X. M. Wang, W. L. Li, J. M. Wang, and Y. P. Hu. 2004. Expression and Cytotoxicity of EGFP-labeled D-amino acid oxidase in HeLa cells. Acta. Genetica. Sinica. 31(11): 1175-1181.
Hongmin, Z., Y. Qiuyue, S. Mingxuan, T. Maikun, and N. Liwen. 2004. Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions. J. Microbiol. 429(4): 336-339.
Horton, R. M. 1995. PCR-mediated recombination and mutagenesis. Mol. Biotechnol. 3 : 93-99.
Hwang, T. S., H. M. Fu, L. L. Lin and W. H. Hsu. 2000. High-level expression of Trigonopsis variabilis D-amino acid oxidase in Escherichia coli using lactose as inducer. Biotechnol. Lett.22:655-658.
Inaba, Y., K. Mizukami, N . Hamada-Sato, T. Kobayashi, C . Imada, and E. Watanabe. 2003. Development of a D-alanine sensor for the monitoring of a fermentation using the improved selectivity by the combination of D-amino acid oxidase and pyruvate oxidase. Biosens. Bioelectron. 19: 423-431.
Isogai, T., H. Ono, Y. Ishitani, H. Kojo, Y. Ueda, and M. Kohsaka. 1990. Structure and expression of cDNA for D-amino acid oxidase active against cephalosporin C from Fusarium solani. J. Biochem. 108:1063-1069.
Ju, S. S., L. L. Lin, H. R. Chien, and W. H. Hsu. 2000. Substitution of the critical methionine residues in Trigonopsis variabilis D-amino acid oxidase with leucine enhances its resistance to hydrogen peroxide. FEMS Microbiol. Lett. 186 : 215-219.
Ju, S. S., L. L. Lin, W. C. Wang, and W. H. Hsu. 1998. A conserved aspartate is essential for FAD binding and catalysis in the D-amino acid oxidase from Trigonopsis variabilis. FEBS Lett. 436 : 119-122.
Katagiri, M., H. Tojo, K. Horiike and T. Yamano. 1991. Immunochemical relationship of D-amino acid oxidase in various tissues and animals. Comp. Biochem. Physiol. 99B:345-350.
Kawamoto, S., M. Kobayashi and A. Tanaka. 1977. Production of D-amino acid oxidase by Candida tropicalis. J. Ferment. Technol. 55:13-18.
Kazuo, S., M. Sofia, C. R. Anna, and S. Hisanori. 2005. Mutual regulation between serine and nitric oxide metabolism in human glioblastoma cells. Neurosci. Lett.
Kikuchi, M., K. Ohnishi, and S. Harayama. 2000. An effective family shuffling method using single-stranded DNA. Gene. 243:133-137.
Kikuchi, M., K. Ohnishi, and S. Harayama. 1999. Novel family shuffling methods for the in vitro evolution of enzymes. Gene. 236:159-167.
Koga, Y., M. Haruki, M. Morikawa, and S. Kanaya. 2001. Stabilities of chimeras of hyperthermophilic and mesophilic glycerol kinases constructed by DNA shuffling. J. Biosci. Bioeng. 91:551-556.
Konno, R. and Y. Yasumura. 1984. Brain and kidney D-amino acid oxidase are coded by a single gene in the mouse. J. Neurochem. 42:584-586.
Krebs, H. A. 1935. Metabolism of amino acids. Biochem. 125 : 1951- 1969.
Kubicek-Pranz, M., and M. Rohr. 1985. D-amino acid oxidase from Trigonopsis variabilis:comparison of enzyme specificity〝in vivo〞and〝in vitro〞. Biotechnol. Lett. 7:9-14.
Kurtzman, A. L., S. Govindarajan, K. Vahle, J. T. Jones, V. Heinrichs, and P. A. patten. 2001. Advances in directed protein evolution by recursive genetic recombination:applications of therapeutic proteins. Curr. Opin. Biotechnol. 12:361-370.
Lee, Y. H., and W. S. Chu. 1996. D-amino acid oxidase activity from Rhodosporidium toruloides. Lett. Appl. Microbiol. 23:283-286.
Lee, Y. H., W. S. Chu, and W. H. Hsu. 1994. Bioconversion of cephalosporin C with D-amino acid oxidase from the yeast Rhodosporidium toruloides. Biotechnol. Lett. 16:467-472.
Lehmann, M., and M. Wyss. 2001. Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr. Opin. Biotechnol. 12(4): 371-375.
Liu, X., G. He, X. Wang, Q. Chen, X. Qian, W. Lin, D. LI, N. Gu, G. Feng and L. He. 2004. Association of DAAO with schizophrenia in the Chinese population. Neurosci. Lett. 369: 228-233.
Lorimer, I. A. J., and I. Pastan. 1995. Random recombination of antibody single chain Fv sequences after fragmentation with DNaseI in the presence of Mn2+. Nucleic. Acids. Res. 23:3067-3068.
Luo, H., H. Yu, Q. Li and Z. Shen. 2004. Cloning and co-expression of D-amino acid oxidase and glutary-7-aminocephalosporanic acid acylase genes in Escherichia coli. Enzyme Microb. Technol. 35: 514-518.
Luo, H., Q. Li, H. Yu and Z. Shen. 2004. Construction and application of fusion proteins of D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase for direct bioconversion of cephalosporin C to 7-aminocephalosporanic acid. Biochem. Lett. 26:939-945.
Masao, M., W. Masashi, Y. Shigeki, K. Ryuichi, and H. Yuuichi. 2005. Spatial learning and long-term potentiation of mutant mice lacking D-amino acid oxidase. Neurosci. Res.
Mattevi, A., M. A. Vanoni and B. Curti. 1997. Structure of D-amino acid oxidase: new insights from an old enzyme. Curr. Opin. Struct. Biol. 7: 804-810.
Mattevi, A., M. A. Vanoni, F. Todone, M. Rizz, A. Teplyakov, A. Coda, M. Bolognesi and B. Curti. 1996. Crystal structure of D-amino acid oxidase:a case of active site mirrorimage convergent evolution with flavocytochrome b2. Proc. Natl. Acad. Sci. USA 93:7496-9501.
Matthias, G., and F. Lutz. 1999. Production of a new D-amino acid oxidase from Fungus Fusarium oxysporum. Appl. Environ. Microbiol. 65: 3750-3753.
Mikio, B., C. Setoyama, R. Miura, and N. Kajiyama. 2005. Thermostabilization of porcine kidney D-amino acid oxidase by a single amino acid substitution. Biotechnol. Bioeng. 93(5) : 1023-1027.
Miura, R., C. Setoyama, Y. Nishima, K. Shiga, I. Miyahara, H. Mizutani and K. Hirotsu. 1997. Structural and mechanistic studies on D-amino acid oxidase-substrate complex: implications of the crystal structure of enzyme-substrate analog complex. J. Biochem. 122:825-833.
Miura, R., C. Setoyama, Y. Nishima, K. Shiga, I. Miyahara, H. Mizutani and K. Hirotsu. 2001. Porcine kidney D-amino acid oxidase:the three-dimensional structure and its catalytic mechanism based on the enzyme-substrate complex model. J. Mol. Catalysis B:Enzymatic 12:43-52.
Mohammed G. S., O. Shigeru, and A. Hiroki. 2003. Molecular characterization of D-amino acid oxidase from common carp Cyprinus carpio and its induction with exogenous free D-alanine. Arch. Biochem. Biophys. 420: 121-129.
Momoi, K., K. Fukui, F. Watanabe and Y. Miyake. 1988. Molecular cloning and sequence analysis of cDNA encoding human kidney D-amino acid oxidase. FEBS Lett. 283:180-184.
Momoi, K., K. Fukui, F. Watanabe and Y. Miyake. 1990. Gene expression of D-amino acid oxidase in rabbit kidney. J. Biochem. 108:406-413.
Mothet, J. -P., A. T. Parent, H. Wolosker, R. O. Brady, Jr., D. J. Linden, C. D. Ferris, M.A. Rogawski and S. H. Snyder. 2000. D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA. 97: 4926-4931.
Motoshige, M., K. Fukui, F. Watanabe, S. Takahashi, M. Tada, M. Kanashiro, and Y. Miyake. 1991. Studies on Phe-228 and Leu-307 recombinant mutants of porcine kidney D-amino acid oxidase: expression, purification, and characterization. J. Biochem. 109 : 171-177.
Nagata, Y., R. Kono, Y. Yasumura and T. Akino. 1989. Involvement of D-amino acid oxidase in elimination of free D-amino acid in mice. Biochem. J. 257:291-292.
Nagata, Y., R. Yamada, H. Nagasaki, R. Kono and Y. Yasumura. 1991. Administration of D-alanine did not cause increase of D-amino acid oxidase activity in mice. Experientia.47:835-838.
Nakajima, N., D. Conrad, H. Sumi, K. Suzuki., N. Esaki, C. Wandrey and K. Soda. 1990. Continuous conversion to optically pure L-methionine from D-enzntiomer contaminated preparations by an immobilized enzyme membrane reactor. J. Ferment. Technol. 70: 322-325.
Nobuyoshi, N., C. Dietrich, S. Hiroyuki, S. Kazuhiko, E. Nobuyoshi, W. Chiristian, and S. Kenji. 1990. Continuous conversion to opically pure L-methionine from D-enantiomer contaminated preparation by an immobilized enzyme membrane reactor. J. Ferment. Bioeng. 70(5): 322-325.
Okamoto, M.P., R.K. Nakahiro, A. Chin, A. Bedikian and M.A. Gill. 1994. Cefepime:a new fourth-generation cephalosporin. Am. J. Hosp. Pharm. 51:462-477.
Perotti, M. E., L. Pollegioni, and M. S. Pilone. 1991. Expression of D-amino acid oxidase in Rhodotorula gracilis under induction conditions:a biochemical and cytochemical study. Eur. J. Cell Biol. 55:104-113.
Pilone, M. S. 2000. D-amino acid oxidase: new findings. Cell. Mol. Life. Sci. 57: 1732-1747.
Pilone, M. S., S. Buto, and L. Pollegioni. 1995. A process bioconversion of cephalosporin C by Rhodotorula gracilis D-amino acid oxidase. Biotechnol. Lett. 17(2): 199-204.
Pistorius, E. K., and H. Voss. 1977. A D-amino acid oxidase from Chlorella vulgaris. Biochim. Biohys. Acta. 481:395-406.
Pollegioni, L., A. Falbo and M. S. Pilone. 1992. Speficity and kinetics of Rhodotorula gracilis D-amino acid oxidase. Biochim. Biophys. Acta. 1120:11-16.
Pollegioni, L., B. Langkau, W. Tischer, S. Ghisla and M. S. Pilone. 1993. Kinetic mechanism of D-amino acid oxidase from Rhodotorula gracilis and Trigonopsis variabilis. J. Biol. Chem. 268:13850-13857.
Rosenfeld, M. G., and E. H. Leiter, 1977. Isolation and characterization of a mitochondrial D-amino acid oxidase from Neurospora crassa.
Can. J. Biochem.. 55(1):66-74.
Sakai Y., H. Yurimoto, H. Matsuo and N. Kato. 1998. Regulation of peroxisomal proteins and organelle proliferation by multiple carbon sources in the methylotrophic yeast, Candida boidinii. Yeast 14: 1175-1187.
Sarower, M. G., S. Okada and H. Abe. 2005. Catalytic and structural characteristics of carp hepatopancreas D-amino acid oxidase expressed in Escherichia coli. Comp. Bochem. Physiol. B 140: 417-425.
Sasamura, T., A. Matsuda and Y. Kokuba. 1998. Tumour growth inhibition and nutritional effect of D-amino acid solution in AH109A hepatoma-bearing rats. J. Nutr. Sci. Vitamin. 44:79-87.
Sasamura, T., A. Matsuda and Y. Kokuba. 2002. Determination of D-amino acid oxidase activity in tumour cells. Ann. Clin. Biochem. 39(6):595-598.
Sasek, V. and G. E. Becker. 1969. Effect of difference nitrogen sources on cellular form of Trigonopsis variabilis. J. Bacteriol. 99:891-892.
Schell, M. J., M. E. Molliver and S. H. Snyder. 1995. D-serine, an endogenous synaptic modulator: Localization to astrocytes and glutamate-stimulated release. Proc. Natl. Acad. Sci. USA. 92: 3948-3952.
Schumacher, J., R. A. Jamra, J. Freudenberg, T. Becker, S. Ohlraun, A. C. J. Otte, M. Tullius, S. Kovalenko, A. V. D. Bogaer, W. Maier, M. Rietschel, P. Propping, M. M. Nothen and S. Cichon. 2004. Examination of G-72 and D-amino acid oxidase as genetic risk factors for schizophrenia and bipolar affective disorder. Mol. psychiatry. 9: 203-207.
Sentheshanmuganathan, S. and W. J. Nickerson. 1962. Transminase and D-amino acid oxidase of Trigonopsis variabilis. J. Gen. Microbiol. 27:465-471.
Serizawa, N., K. Nakagawa, T. Haneishi, S. Kamimura, and A. Naito. 1980. Enzymatic conversion of cephalosporin C by D-amino acid oxidase from Trigonopsis variabilis. J. Antibiot. 33: 585-590.
Sikora, L., and G. A. Marzluf. 1982. Regulation of L-amino acid oxidase and of D-amino acid oxidase in Neurospora crassa. Mol. Gen. Genet. 186:33-39.
Silvia S., A. Boselli, V. Job, M. S. Pilone, L. Pollegioni, and G. Molla. 2006. The role of tyrosines 223 and 238 in Rhodotorula gracilis D-amino acid oxidase catalysis: interpretation of double mutations. Enzyme Microb. Technol. 38 : 795-802.
Silvia, S., E. Rosini, G. Molla, M. S. Pilone, and L. Pollegioni. 2004. Modulating D-amino acid oxidase substrate specificity: production of an enzyme for analytical determination of all D-amino acid by directed evolution. Protein Eng. Des. Sel. 17(6) : 517-525.
Silvia, S., S. Lorenzi, G. Molla, S. Pilone, and C. Rossetti. 2002. Engineering the substrate specificity of D-amino-acid oxidase. J. Biol. Chem. 277(30) : 27510-27516.
Simonetta, M. P., M. A. Vanoni and B. Curti. 1982. D-amino acid oxidase activity in yeast Rhodotorula gracilis. FEMS. Microbiol. Lett. 15:27-31.
Simonetta, M. P., M. A. Vanoni and P. Casalin. 1987. Purification and properties of D-amino acid oxidase, an inducible flavoenzyme from Rhodotorula gracilis. Biochim. Biophys. Acta 914:136-142.
Song, J. K. and J. S. Rhee. 2001. Enhancement of stability and activity of phospholipase A1 in organic solvents by directed evolution. Biochim. Biophys. Acta. 1547:370-378.
Stadtman, E. R. 1993. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 62: 797-821.
Stemmer, W. P. C. 1994a. DNA shuffling by random fragmentation and reassembly:In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA. 91:10747-10751.
Stemmer, W. P. C. 1994b. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 370:389-391.
Sulter G.J., H.R. Waterham, J.M. Goodman and M. Veenhuis. 1990. Proliferation and metabolic significance of peroxisomes in Candida boidinii during growth on D-alanine or oleic acid as the sole carbon source. Arch. Microbiol. 153: 485-489.
Tada, M., K. Fukui, K. Momoi, and Y. Miyake. 1990. Cloning and expression of a cDNA encoding mouse kidney D-amino acid oxidase. Gene. 90: 293-297.
Teh, L. C., L. J. Murphy, L. N. Hug, S. A. Surus, G. H. Friesen, L. Lararus, and E. G. Chapman. 1987. Methionine oxidation in human growth hormone and human chorionic somatomammotropin. J. Biol. Chem. 262: 6472-6477.
Tishkov, V. I. and K. Khoronenkova. 2005. D-amino acid oxidase Structure, Catalytic Mechanism, and Practical Application. Biochem.70:40-54.
Trost, E. M. and L. Fischer. 2002. Minimization of by-product formation during D-amino acid oxidase catalyzed racemate resolution of D/L-amino acids. J. Mol. Catal. B:Enzymatic 19-20:189-195.
Tu, S., and D. B. Mccormick. 1972. Insolubilized D-amino acid oxidase: properties and potential use. Sep. Sci. 7: 403-408.
Umhau, S., L. Pollegioni, G. Molla, K. Diederichs, W. Welte, M. S. Pilone and S. Ghisla. 2000. The x-ray structure of D-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation. Proc. Natl. Acad. Sci. USA. 97:12463-12468.
Upadhya, R., H. Nagajyothi and S. G. Bhat. 1999. D-amino acid oxidase and catalase of detergent permeabilized Rhodotorula gracilis cells and its potential use for the synthesis of α-keto acid. Process Biochem. 35:7-13.
Van, S., J. F., R. I. Stefan, H. Y. Aboul-Enein. 2000. Amperometric biosensor based on D-aminoacid oxidase for the R-perindopril assay. Fresenius J. Anal. Chem. 367(2):178-180.
Vicenzi, J. T., and G. J. Hansen. 1993. Enzymatic oxidation of cephalosporin C using whole cells of the yeast Trigonopsis variabilis within a ‘cross-flow filter-reactor’. Enzyme Microb. Technol. 15: 281-285.
Watanabe F., K. Fukui, K. Momoi and Y. Miyake. 1989. Site-specific mutagenesis of Lysine-204, Tyrosine-224, Tyrosine-228, and Histidine-307 of porcine kidney D-amino acid oxidase and the implications as to its catalytic function. J. Biochem. 105:1024-1029.
Waxman, D. J., and J. L. Strominger. 1983. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotic. Ann. Rev. Biochem 52:825-869.
Wei, C. J., J. C. Huang and Y. P. Tsai. 1989. Study on the synthesis of D-amino acid oxidase in Trigonopsis variabilis in continuous culture. Biotechnol. Bioeng. 34:570-574.
Westphal, A. H., and A. De. Kok. 1988. Lipoamide dehydrogenase from Azotobatcer vinelandii:molecular cloning, organization and sequence analysis of the gene. Eur. J. Biochem. 172:299-305.
Wierenga, R. K., J. Drenth and G. E. Schulz. 1983. Comparison of the three dimensional protein and nucleotide structure of the FAD-binding domain of p-hydroxybenzoate hydroxylase with the FAD as well as NADPH-binding domains of glutathione reductase. J. Mol. Biol. 167:725-739.
Wingfield, P. T. 1997. Overview of the purification of recombinant protein produced in Escherichia coli. Current Protocols In Protein Science: 6.0.1-6.3.8
Wolosker, H., K .N. Sheth, M. Takahashi, J-P. Mothet, R. A. Brady, Jr., C. D. Ferris and S. H. Snyder. 1999. Purification of serine racemase:Biosynthesis of the neuromodulator D-serine. Proc. Natl. Acad. Sci. USA. 96:721-725.
Yano, T., S. Oue and H. Kagamiyama. 1998. Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc. Natl. Acad. Sci. USA. 95:5511-5515.
Yocum, R. R., J. R. Rasmussen and J. L. Strominger. 1980. The mechanism of action of penicillin. J. Biol. Chem. 255:3977-3985.
Yu, J., D. Y. LI, Y. J. Zhang, S. Yang, R. B. Li and Z. Y. Yuan. 2002. High expression of Trigonopsis variabilis D-amino acid in Pichia pastoris. J. Mol. Catal B: Enzymatic. 18: 291-297.
Yurimoto, H., T. Hasegawa, Y. Sakai and N. Kato. 2001. Characterization and High-level Production of D-amino acid oxidase in Candida boidinii. Biosci. Biotechnol. Biochem. 65:627-633.
Zhang, J.-H., G. Dawes and W. P. C. Stemmer. 1997. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc. Natl. Acad. Sci. USA. 94:4504-4509.
Zhao, H. and F. H. Arnold. 1997. Optimization of DNA shuffling for high fidelity recombination. Nucleic. Acids. Res. 25:1307-1308.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林淑玲、馬信行(1983):家庭社經背景對學前教育機會的影響及學前教育對小學學業成績的影響。國立政治大學教育與心理研究,6:19-39。
2. 林淑玲(1982):家庭社經地位與學前教育對學齡兒童學業成就之影響。國立政治大學教育研究所碩士論文。
3. 林軍治(1987):教學法、場地獨立╱依賴、性別及社經地位與國小學童數學認知層次關係之研究。花蓮師院學報,1,253-308。
4. 林軍治(1985):場地獨立╱依賴、城鄉背景、性別及社經地位與國中生幾何推理能力之研究。花蓮師專學報,16:155-191。
5. 林文達(1983):教育機會公平性之研究。國立政治大學學報,48:87-115。
6. 林義男(1993):國中學生家庭社經背景、父母參與及其學業成就的關係。國立彰化師範大學輔導學報。11:95-141。
7. 胡夢鯨(1988):從思想研究的本質與步驟談「回歸原點」的必要性。現代教育,3(2):150-161。
8. 馬信行(1985):家庭文化背景與學業成績的關係。國立政治大學學報,51:139-165 。
9. 黃萬益(1975):國小學生學習適應問題之研究。新竹師專學報,2:146-182。
10. 黃毅志(1990):台灣地區教育機會之不平等性。思與言,28(1),93-125。
11. 黃毅志(2003):「台灣地區新職業聲望與社經地位量表」之建構與評估:社會科學與教育社會學研究本土化。教育研究集刊,49:1-31。
12. 陳正昌(1994b):從態度層面談教師批判思考的內涵與精神。教育研究雙月刊,57:48-54。
13. 陳雅莉(1993):城鄉父母對兒童的管教態度與兒童性別、排行、數學學業成就及父親社經地位、母親是否就業之相關研究-以國小六年級兒童為例。國立台北師範學院,傳習。11:1-28 。
14. 鄒浮安(1994):家庭社經地位與學業成就之關係:後設分析。教育研究資訊,2(3):38-47。
15. 鄭淵全(1998):社經地位、能力、學校教育與國小學生學業成就之關係—弁鄖敶d與衝突典範之探究。國立新竹師範學院新竹師院學報,11:421-448 。