|
[1] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, IEEE Std 802.11, Part11, 1997
[2] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High Speed Physical Layer in the 5GHz Band, IEEE Std 802.11a, Part11, 1999
[3] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher Speed Physical Layer Extension in the 2.4GHz Band, IEEE Std 802.11b, Part11, 1999
[4] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 4: Further Higher Data Rate Extension in the 2.4GHz Band, IEEE Std 802.11g, Part11, 2003
[5] M. K. Raja, T. T. C. Boon, K. N. Kumar, and W. S. Jau, “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN,” IEEE Radio Frequency Integrated Circuit (RFIC) Symposium, 439-442, Philadelphia, Pennsylvania U.S.A. (2003).
[6] N. E. Farid, A. Marzuki, and A. I. A. Rahim, “A variable gain, 2.5-GHz CMOS low noise amplifier for mobile wireless communications,” Proc. IEEE 9th Malaysia International Conference on Communication (MICC), 885-889, Kuala Lumpur, Malaysia (2009).
[7] J. W. M. Rogers, and C. Plett, “Radio Frequency Integrated Circuit Design,” 2nd ed., Artech House, Norwood (2010).
[8] D. M. Pozar, “Microwave Engineering,” 4th ed., John Wiley &; Sons, Danvers (2012).
[9] B. Razavi, “RF Microelectronics,” 2nd ed., Prentice Hall, Upper Saddle River (2011).
[10] B. Razavi, “Design of Analog CMOS Integrated Circuits,” International ed., McGraw Hill, New York (2001).
[11] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits. 32(5), 745-759 (1997).
[12] B. Razavi, “A 5.2-GHz CMOS receiver with 62-dB image rejection,” IEEE J. Solid-State Circuits. 36(5), 810-815 (2001).
[13] T. K. Nguyen, C. H. Kim, G. J. Ihm, M. S. Yang, and S. G. Lee “CMOS low noise amplifier design optimization techniques,” IEEE Trans. Microwave Theor. Tech. 52(5), 1433-1442 (2004).
[14] T. H. Lee, “The design of CMOS Radio-Frequency Integrated Circuit,” 2nd ed., Cambridge University Press, New York (2004).
[15] T. K. K. Tsang, and M. N. EI-Gamal, “Gain and frequency controllable sub-1V 5.8GHz CMOS LNA,” Proc. IEEE International Symposium on Circuits and Systems (ISCAS), 795-798, Scottsdale, Arizona U.S.A. (2002).
[16] T. K. K. Tsang, and M. N. EI-Gamal, “Gain controllable very low voltage 8-9 GHz integrated CMOS LNA’s,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 205-208, Seattle, Washington U.S.A. (2002).
[17] D. Mukherjee, J. Bhattacharjee, S. Chakraborty, and J. Laskar, “A 5-6 GHz fully integrated CMOS LNA for a dual band WLAN receiver,” IEEE Radio and Wireless Conference (RAWCON), 213-215, Boston, Massachusetts U.S.A. (2002).
[18] M. D. Tsai, R. C. Liu, C. S. Lin and H. Wang, “A low-voltage fully-integrated 4.5-6-GHz CMOS variable gain low noise amplifier,” Proc. The 33rd European Microwave Conference (EuMC), 13-16, Munich, Germany (2003).
[19] S. K. Alam, and J. Degroat, “A 2 GHz variable gain low noise amplifier in 0.18-μm CMOS,” Midwest Symposium on Circuits and Systems (MWSCAS), 623-626, Covington, Kentucky (2005).
[20] F. Kalantari, N. Masoumi and R. Saeidi, “A 5.25-GHz low noise amplifier for WMAN applications in a 0.18-μm CMOS technology,” Proc. The 17th International Conference on Microelectronics (ICM), 122-127, Islamabad, Pakistan (2005).
[21] L. Lee, S. S. Jamuar, R. M. Sidek and S. Khatun, “An improved power consumption circuit of a 5.7-GHz variable gain low noise amplifier (VGLNA) for RF applications,” Proc. International RF and Microwave Conference, 66-70, Putrajaya, Malaysia (2006).
[22] L. Lee, R. M. Sidek, S. S. Jamuar, and S. Khatun, “Low voltage cascode current mirror in a 1.8-GHz variable gain low noise amplifier (VGLNA),” Proc. International Symposium on Communications and Information Technologies (ISCIT), 1097-1100, Bangkok, Thailand (2006).
[23] M. T. Hsu, T. Y. Chih, and G. R. Li, “1.5V 5-GHz low noise amplifier with source degeneration,” Proc. Asia-Pacific Microwave Conference (APMC), 405-408, Yokohama, Japan (2006).
[24] C. M. Lo, S. F. Chao, C. C. Chang and H. Wang, “A fully integrated 5-6 GHz CMOS variable gain LNA using helix-stacked inductors,” Proc. European Microwave Integrated Circuits Conference (EuMIC), 348-351, Manchester, United Kingdom (2006).
[25] S. K. Alam, J. DeGroat, and P. Roblin, “A 5-GHz CMOS variable gain low noise amplifier for wireless LAN applications,” Proc. IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 289-293, San Juan, Puerto Rico (2006).
[26] V. Subramanian, S. Spiegel, R. Eickhoff, and G. Boeck, “A CMOS low noise amplifier for 5 to 6 GHz wireless applications,” Proc. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 778-781, Salvador, Brazil (2007).
[27] A. Pourmand, E. N. Aghdam, and A. Zahedi, “A fully integrated CMOS low noise amplifier for IEEE 802.11a standard applications,” Proc. The 19th Iranian Conference on Electrical Engineering (ICEE), 1-4, Tehran, Iran (2011).
[28] X. Tang, and F. Huang, “Design of a high frequency low-power LNA,” Proc. International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-4, Shenzhen, China (2012).
|