跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 00:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇哲正
研究生(外文):Che-Cheng Su
論文名稱:進氣歧管汽油噴射對柴油引擎燃燒均質性之影響
論文名稱(外文):The Effects of Intake Manifold Gasoline Injection on the Homogeneous Characteristics of Diesel Engine Combustion
指導教授:施國亮施國亮引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:102
中文關鍵詞:熱值直噴式柴油引擎燃燒均質性
外文關鍵詞:Direct Injection Diesel EngineHeating ValueCombustion Generosity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:2
本文研究對象以YAMAHA ME200F三缸直噴式柴油引擎為實驗量測目標,主要是藉由量測引擎污染排放數據、汽缸壓力、熱釋放率及總熱釋放,加以探討進氣歧管汽油噴射對柴油引擎燃燒均質性之影響。本實驗所採用的輔助噴射燃料為中國石油公司所製造之92無鉛汽油,藉由實驗結果加以比較柴油引擎較佳之輔助噴油角度位置,並探討柴油引擎輔助汽油噴射在獲得等能量(熱值與Baseline相同)時之扭力變化值;最後亦比較出不等能量及等能量時之最佳輔助汽油噴射量。

在本研究之中,吾人將輔助預混均質稀薄燃燒分為兩個部份。第一個部份為不等能量下燃燒之情況,在此部份吾人在柴油引擎某固定轉速及負載中加入預混均質稀薄油氣,由於汽缸內有較多油氣燃燒之熱值,故此時柴油引擎之轉速會隨著汽油當量比之增加而升高,並且馬力亦隨著汽油當量比增加而提昇。由於柴油引擎加入較多油氣燃燒而造成引擎馬力提昇之效果乃屬正常現象;故在第二部份時,吾人探討柴油引擎輔助預混均質稀薄燃燒相同於Baseline熱值時(在此部份,吾人稱為等能量)之燃燒狀況,並且以提高或降低引擎扭力的方式來達到等能量下柴油引擎輔助預混均質稀薄燃燒之表現。

由實驗結果可得,進氣歧管輔助汽油噴射起始角度在64°BTDC有較好的表現。進氣歧管汽油噴射對柴油引擎之污染排放而言,在降低氮氧化物(NOx)及黑煙(Smoke)方面具有顯著之效果,此現象乃是因為加入預混均質稀薄油氣後,由於燃燒室內之混合氣較均勻(溫度分佈亦較均勻),且點火(Ignite)在燃燒室內多個部份產生,縮短了擴散燃燒(Diffusion Combustion)之過程,使NOx下降。在加入輔助燃油後,由於均質燃燒的效果造成缸內之溫度均勻分配,並且燃燒室混合氣之再氧化率提高而使Smoke有下降的趨勢。另外,一氧化碳(CO)及碳氫化合物(HC)之排放,則因為缸內油氣增加及油滴之凝結造成有增加的趨勢。就引擎性能而言,在低轉速低當量比時,由於柴油較少油量的關係導致無法點燃輔助汽油,使引擎之性能有降低的現象;但隨著柴油引擎轉速及當量比的增加,由於較多之柴油量及較好的混合效果,使柴油能夠燃燒輔助汽油,引擎有較好性能輸出。
This research is done against the YAMAHA ME200F three cylinders direct injection diesel engine. The engine exhaust emissions, the cylinder pressure, and the heat releases characteristics are measured and analyzed to study the effects of gasoline injection in the intake manifold on the engine combustion generosity. The best fuel injection angle and the optimized 92 CPC gasoline injected rate are studied under balanced and unbalanced total fuel energy consumed in the diesel engine in order to understand this relatively homogeneous combustion phenomena.

The first part of this research the gasoline fuel is injected into the intake manifold. Since the fuel energy is increased, the engine speed and torque output are increased as expected. The second part of this research the injected diesel fuel amount is reduced (under a fixed engine speed) according the fuel heating value contained in the gasoline fuel. Thus, the total fuel energy (including the diesel and the gasoline fuel) injected into the cylinder are remained the same.

The measurements indicate the best angle of fuel injection in the intake manifold is 64°BTDC. The NOx and Smoke emissions are obviously improved in this fuel injected into the manifold study. The NOx is reduced because the relatively homogeneous temperature distribution in the diesel engine combustion chamber. The smoke is reduced because the non-homogeneous environment has been improved. However, the CO and HC emissions are deteriorated because the HC vapor is surrounding the cylinder liner boundary layer area. The engine performance under low speed and low load is suffered because the failure of supplementary fuel ignition and worse fuel-air mixing. If the engine speed and load are increased, this disadvantage of gasoline injection into intake manifold is adjusted.
中文摘要 --------------------------------------------------------------- i
英文摘要 --------------------------------------------------------------- iii
誌謝 --------------------------------------------------------------- v
目錄 --------------------------------------------------------------- vi
表目錄 --------------------------------------------------------------- ix
圖目錄 --------------------------------------------------------------- x
符號說明 --------------------------------------------------------------- xiv

第一章 緒論----------------------------------------------------------- 1
1.1 前言-------------------------------------------------- 1
1.2 引擎污染排放對環境之影響--------------------------------------- 2
1.2.1 氮氧化合物(NOx)之影響----------------------------------- 2
1.2.2 碳氧化合物(COx)之影響----------------------------------- 2
1.2.3 碳氫化合物(HC)之影響------------------------------------ 3
1.2.4 煙霧粒子(Particulate)之影響----------------------------- 3
1.3 引擎污染排放之防治--------------------------------------------- 3

第二章 研究背景及研究目的--------------------------------------------- 4
2.1 研究背景------------------------------------------------------- 4
2.2 研究目的------------------------------------------------------- 8
2.3 引擎污染排放生成機制------------------------------------------- 9
2.3.1 氮氧化合物(NOx)之形成----------------------------------- 9
2.3.2 一氧化碳(CO)之形成-------------------------------------- 11
2.3.3 碳氫化合物(HC)之形成------------------------------------ 11
2.3.4 煙霧粒子(Particulate)之形成----------------------------- 12

第三章 實驗設備與量測方法--------------------------------------------- 14
3.1 進氣歧管輔助汽油噴射系統--------------------------------------- 14
3.1.1 電路部份------------------------------------------------ 14
3.1.1.1 電晶體開關------------------------------------- 15
3.1.1.2 訊號比對器與近接開關--------------------------- 16
3.1.2 油路部份------------------------------------------------ 18
3.1.2.1 噴油嘴----------------------------------------- 18
3.1.2.2 壓力調節器------------------------------------- 18
3.1.3 LabView噴油控制程式------------------------------------- 19
3.2 實驗設備與量測儀器--------------------------------------------- 22
3.2.1 引擎本體及實驗控制元件設備------------------------------ 22
3.2.1.1 引擎本體--------------------------------------- 22
3.2.1.2 控制元件設備----------------------------------- 24
3.2.2 實驗儀器部份-------------------------------------------- 24
3.2.2.1 引擎廢氣排放濃度量測--------------------------- 24
3.2.2.2 引擎燃燒室壓力量測----------------------------- 28
3.2.3 實驗儀器操作-------------------------------------------- 29
3.2.3.1 引擎啟動之步驟--------------------------------- 29
3.2.3.2 各種轉速下Φd值之量測--------------------------- 29
3.2.3.3 等能量(等熱值)燃料噴射之計算----------------- 33
3.2.3.4 量測引擎廢氣排放NO、NOx之步驟------------------ 34
3.2.3.5 量測引擎廢氣排放HC之步驟----------------------- 35
3.2.3.6 黑煙不透光率之操作步驟------------------------- 35
3.2.3.7 量測引擎廢氣排放CO、CO2之步驟------------------ 36
3.2.3.8 量測引擎燃燒室內之壓力步驟--------------------- 36
3.2.4 儀器校正------------------------------------------------ 38
3.2.4.1 CO、CO2、O2分析儀------------------------------ 38
3.2.4.2 HC分析儀--------------------------------------- 39
3.2.4.3 NO、NOx分析儀---------------------------------- 39
3.2.5 實驗量測步驟-------------------------------------------- 40
3.2.5.1 汽油基本噴油量之量測--------------------------- 40
3.2.5.2 廢氣排放及壓力訊號之量測----------------------- 41

第四章 結果與討論----------------------------------------------------- 42
4.1 不等能量下,進氣歧管汽油噴射對柴油引擎性能之影響--------------- 43
4.1.1 Baseline部份-------------------------------------------- 43
4.1.1.1 污染排放之變化--------------------------------- 43
4.1.1.2 引擎性能之變化--------------------------------- 44
4.1.2 不同輔助汽油噴射起始角度位置對柴油引擎污染排
放之影響------------------------------------------------ 45
4.1.3 不同汽油當量比對柴油引擎性能影響之探討------------------ 48
4.1.3.1 污染排放之變化--------------------------------- 48
4.1.3.2 引擎性能之變化--------------------------------- 49
4.2 等能量下,進氣歧管汽油噴射對柴油引擎性能之影響----------------- 66
4.2.1 柴油引擎總當量比之變化---------------------------------- 66
4.2.2 固定轉速時柴油引擎扭力之變化---------------------------- 66
4.2.3 不同汽油當量比對柴油引擎性能影響之探討------------------ 67
4.2.3.1 污染排放之變化--------------------------------- 67
4.2.3.2 引擎性能之變化--------------------------------- 68
4.3 不等能量及等能量下,進氣歧管汽油噴射對柴油引擎性能
之影響比較----------------------------------------------------- 82
4.3.1 對柴油引擎污染排放之比較-------------------------------- 82
4.3.2 對柴油引擎最佳輔助汽油噴射量之比較---------------------- 83
4.3.2.1 不等能量情況下--------------------------------- 83
4.3.2.2 等能量情況下----------------------------------- 84

第五章 結論與未來展望------------------------------------------------- 91
5.1 結論----------------------------------------------------------- 91
5.2 未來展望------------------------------------------------------- 93

參考文獻 --------------------------------------------------------------- 94
附錄一 --------------------------------------------------------------- 96
附錄二 --------------------------------------------------------------- 99
自傳 --------------------------------------------------------------- 102
1.陳永昌編著,1991年2月,汽車引擎,新科技書局。
2.Leonard Kuo-Liang Shih, 1998, “Comparison of the Effect of Various Additives on the Diesel Engine Emissions,” SAE Paper NO.982573.
3.陳德鈞,季延安,林肇信編著,82年4月,大氣污染學,科技圖書股份有限公司。
4.黃靖雄著,民國八十年三月十六日,汽車排氣污染與控制全書,全華科技圖書公司。
5.鄭宗岳、林鴻祥編著,中華民國87年5月15日,空氣污染防治理論與設計,文京圖書有限公司。
6.Thomas W. Ryan III and Timothy J. Callahan, 1996, “Homogeneous Charge Compression Ignition of Diesel Fuel,” SAE Paper NO.961160.
7.Yoshinaka Takeda, Nakagome Keiichi, and Niimura Keiichi, 1996, “Emission Characteristics of Premixed Lean Diesel Combustion with Combustion with Extremely Early Staged Fuel Injection,” SAE Paper NO.961163.
8.B. Chehroudi, K. M. Sinko, and S. Shih, “A Novel Approach for Simultaneous NOx and Smoke Reduction: Interaction-Sprays Injection,” 1996, SAE Paper NO.961678.
9.Haruyuki Yokota, Yugo Kudo, Hiroshi Nakajima, Toshiaki Kakegawa, and Takashi Suzuki, “A new Concept for Low Emission Diesel Combustion,” 1997, SAE Paper NO.970891.
10.Allen W. (Bill) Gray, III and Tomas W. Ryan, III, “Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel,” 1997, SAE Paper NO.971676.
11.K.-P. Schindler, “Why Do We Need the Diesel?” 1997, SAE Paper NO. 972684.1
12.Takeshi Hashizume, Takeshi Miyamoto, Hisashi Akagawa and Kinji Tsujimura, “Combustion and Emission Characteristics of Multiple Stage Diesel Combustion,” 1998, SAE Paper NO. 980505.
13.Hisashi Akagawa, Takeshi Miyamoto, Akira Harada, Satoru Sasaki, Naoki Shimazaki, Takeshi Hashizume and Kinji Tsujimura, “Approach to Solve Problem of the Premixed Lean Diesel Combustion,” 1999, SAE Paper NO.1999-01-0183.
14.Matsuo Odaka, Hisakazu Suzuki, Noriyuki Koike and Hajime Ishii, “Search for Optimizing Control Method of Homogeneous Charge Diesel Combustion,” 1999, SAE Paper NO. 1999-01-0184.
15.Yoshinori Iwabuchi, Kenji Kawai, Takeshi Shoji and Yoshinaka Takeda, “Trial of New Concept Diesel Combustion System-Premixed Compression-Ignited Combustion,” 1999, SAE Paper NO. 1999-01-0185.
16.Shuji Kimura, Osamu Aoki, Hiroshi Ogawa and Shigeo Muranaka, “New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines,” 1999, SAE Paper NO. 1999-01-3681.
17.E. M. Kurtz, D. K. Mather and D. E. Foster, “Parameters That Affect the Impact of Auxiliary Gas Injection in a DI Diesel Engine,” 2000, SAE Paper NO. 2000-01-0233.
18.Salvador M. Aceves, Daniel L. Flowers, Charles K. Westbrook, J. Ray Smith and Wulliam Pitz, Robert Dibble, Magnus Christensen and Bengt Johansson, “A Multi-Zone Model for Prediction of HCCI Combustion and Emissions,” 2000, SAE Paper NO. 2000-01-0327.
19.Scott B. Fiveland and Dennis N. Assanis, “A Four-Stroke Homogeneous Charge Compression Ignition Engine Simulation for Combustion and Performance Studies,” 2000, SAE Paper NO. 2000-01-0332.
20.Je-Hyung Lee and Shinichi Goto, Tadashi Tsurushima and Takeshi Miyamoto, Tomoyuki Wakisaka, “Effects of Injection Conditions on Mixture Formation Process in a Premixed Compression Ignition Engine,” 2000, SAE Paper NO.2000-01-1831.
21.蕭子健、儲昭偉、王智昱編著,2000,LabVIEW基礎篇,高立圖書有限公司
22.蕭子健、儲昭偉、王智昱編著,2000,LabVIEW進階篇,高立圖書有限公司
23.Yamaha Motor Co., Ltd., 1986, ME200F Marine Diesel – Service Manual and Marine Diesel – Owner’s Manual, Tokyo
24.California Analytical Instruments, INC., Model 300/240 CLD Instruction Manual.
25.Abbass, M. K., Andrens, G. E., Williams, P. T., and Bartle, K, D., 1989, “Duedel Particulate Composition Changes Along on Air Cooled Exhaust Pope and Dilution Tunnel”, SAE Paper No. 980789.
26.California Analytical Instruments, INC., Model 300 HIFDHeated Hydrocarbon Analyzer Instruction Manual.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top