跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃嘉玄
研究生(外文):Chia-Hsuan Huang
論文名稱:用於生醫訊號擷取之低功率12位元連續漸近式類比數位轉換器
論文名稱(外文):Low Power 12-bit Successive Approximation ADC for Biomedical Acquisition System
指導教授:黃弘一羅錦興羅錦興引用關係
指導教授(外文):Hong-Yi HuangChing-Hsing Luo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:78
中文關鍵詞:連續漸進式類比數位轉換器
外文關鍵詞:SARADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一個低耗能12位元連續漸近式類比數位轉換器的設計(SAR ADC)。此類比數位轉換器組成元件有取樣保持電路(S/H)、比較器、數位類比轉換器(DAC)以及連續漸近式訊號產生器(SAR)。針對生醫訊號DC訊號會飄動的現象,在此提出一個新的軌對軌比較器,把SAR ADC系統設計成可軌對軌的輸入範圍。此外在DAC部分移除了參考電壓的使用,克服因參考電壓的不匹配所帶來性能上誤差。在耗能方面,整個系統上沒有使用放大器,且針對比較器在時間上做開關控制能有效的降低功率的損耗。使用台積電0.18微米1P6M的製程。供應電壓為1.8V,在取樣頻率200 kHz有效訊號頻寬10 kHz下實際量測後,平均消耗功率76.32-μW,SNDR達到49.7dB。整個晶片的核心面積為0.082毫米平方。
Generally, the signal bandwidth of biomedical signals ( EEG, ECG, Oxygen Saturation, Heart Rate, Temperature ) is under 10 kHz [29]. For portable biomedical acquisition system, lower power A/D converter is an important component that can determine the performance of whole system.
In this paper, a 1.8V 12-bit 200-kS/s successive approximation analog-to-digital converter (SAR ADC) is presented in this work. In order to overcome the biomedical signal’s dc shift and acquire accurately, the proposed ADC receives rail-to-rail input and performs 12-bit resolution (10-bit is the basic requirement for normal biomedical signal). Moreover, the digital-to-analog converter without reference voltage (WRV) and binary capacitor array is also adopted to reduce the total chip area. With these properties, the proposed ADC can be easily integrated with other components in biomedical acquisition system at low cost. The proposed converter is designed in a 0.18-μm CMOS process for biomedical application. Simulation results show that both INL and DNL errors are well controlled in 0.34LSB. The measurement results show SNDR is 49.7 dB and the total power consumption is 76.32-μW at 1.8V supply voltage. The core area of the test chip is 0.082 mm2.
TABLE OF CONTENTS III
LIST OF TABLES V
LIST OF FIGURES VI
Symbols and Abbreviations IX
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 3
Chapter 2 Proposed ADC for Biomedical Application 4
2.1 The architectures of A/D converters 4
2.2 The principle of Successive approximation ADC 6
Chapter 3 Building Block Design 10
3.1 S/H Circuit 10
3.2 Digital to Analog Converter 15
3.2.1 Traditional DAC Structure 15
3.2.2 Proposed DAC Structure 18
3.2.3 Realize scale capacitor Cs 23
3.2.4 Nonlinearity of DAC 24
Effect of Nonlinearities on Code Performance 24
3.2.5 Arrangement of Capacitor Array 26
The geography of capacitor array 26
Metal-insulator-metal ( MIM ) capacitor model 29
3.3 Latch comparator 30
3.3.1 Adapted Comparator 32
3.4 Successive Approximation Register 39
3.5 Operation waveforms of signals 42
Chapter 4 Experiment Result 44
4.1 Quantization Noise 44
4.2 Performance Metrics 45
4.3 FFT Test 49
4.4 Code-Density Testing 51
4.5 Power and Performance Simulation 53
4.6 Layout Arrangement 55
4.7 Test Board and Measurement Environment 58
4.8 Measurement Results 60
Chapter 5 Conclusions and Future Work 68
5.1 Conclusions 68
5.2 Future Work 69
Appendix 70
Reference 76
[1]David A. Johns and Ken Martin,”Analog Integrated Circuit Design”
[2]Allen/Holberg,”Cmos Analog Circuit Design 2th”
[3]Razavi,”Design of Analog CMOS Intrgrated Circuits”
[4]Rudy van de Plassche, “CMOS INTEGRATED ANALOG-TO-DIGITAL AND DIGITAL–TO-ANALOG CONVERTERS”
[5]Gilbert Promitzer, “12-bit Low-Power Fully Differential Switched Capacitor Noncalibrating Successive Approximation ADC with 1 MS/s”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 36, NO. 7, JULY 2001
[6]Jens Sauerbrey, Doris Schmitt-Landsiedel, and Roland Thewes,” A 0.5-V 1-μW Successive Approximation ADC”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 7, Brief Papers, JULY 2003
[7]Christian C. enz, and Gabor C. temes, “Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization”, PKOCbtDlNGS OF THE IEEE, VOL 84, NO 11, NOVEMBER I996
[8]Kul B. Ohri and Michael J. Callahan JR. , ”Integrated PCM Codec”, IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-27, NO. 2, FEBRUARY 1979
[9]Siamak Mortezapour and Edward K. F. Lee,“A 1-V, 8-Bit Successive Approximation ADC in Standard CMOS Process”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 4, APRIL 2000
[10]JAMES L. McCREARY, AND PAUL R. GRAY, “AII-MOS Charge Redistribution Analog-to-Digital Conversion Techniques—Part I”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, DECEMBER 1975
[11]RICARDO E. SUAREZ, PAUL R. GRAY, AND DAJ’ID A. HODGES, “AII-MOS Charge Redistribution Analog-to-Digita Conversion Techniques–-Part II”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, DECEMBER 1975
[12]Chi-Sheng Lin and Bin-Da Liu, “A New Successive Approximation Architecture for Low-Power Low-Cost CMOS A/D Converter ”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 1, JANUARY 2003
[13]Kul B. Ohri and Michael J. Callahan JR. ,” Integrated PCM Codec”, IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-27, NO. 2, FEBRUARY 1979
[14]李國銘, “應用於無線感測網路之超低號能連續近似式類比數位轉換器之設計”, 交通大學 95年7月
[15]A. Rossi and 6.Fu cili, ‘Nonredundant successive approximation register for AD converters’, ELECTRONICS LETTERS 6th June 1996 Vol. 32 No. 12
[16]Kihyuk Sung and Lee-Sup Kim, “A High-Resolution Synchronous Mirror Delay Using Successive Approximation Register”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 11, NOVEMBER 2004
[17]唐佩忠, “VHDL 與數位邏輯設計”, 高立出版
[18]王進賢, “VLSI 電路設計”, 高立出版
[19]Takeshi Yoshida, Miho Akagi, Mamoru Sasaki and Atsushi Iwata, “A 1V supply successive approximation ADC with rail-to-rail input voltage range”, ISCAS, 2005
[20]Jiren Yuan and Christer Svensson, “A 10-bit 5-MS/s Successive Approximation ADC Cell Used in a 70-MS/s ADC Array in 1.2-pm CMOS”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 29, NO. 8, AUGUST 1994
[21]K. Kiyoyama, M. Onoda, and Y. Tanaka, “A Low Current Consumption CMOS Latched Comparator for Body-implanted Chip”, ISCAS, 2005
[22]許哲豪, “使用單一參考電壓的12位元全差動切換電容逐漸趨近式類比數位轉換器” , 成功大學 92年7月
[23]Hwang-Cherng Chow, Bo-Wei Chen, Hsiao-Chen Chen and Wu-Shiung Feng, “A 1.8V, 0.3mW, 10-Bit SA-ADC with New Self-Timed Timing Control for Biomedical Applications, ISCAS, 2005
[24]E. A. Vittoz, “Low-Power Design: Ways to Approach the Limits,” in Dig. Tech.Papers International Solid-State Circuits Conference, pp. 14–18, Feb. 1994.
[25]Brian P. Ginsburg and Anantha P. Chandrakasan, “Dual Scalable 500MS/s, 5b Time-Interleaved SAR ADCs for UWB Applications”, IEEE 2005 CUSTOM INTEGRATED CIRCUITS CONFERENCE, 2005
[26]Michael D. Scott, Bernhard E. Boser, and Kristofer S. J. Pister, “An Ultralow-Energy ADC for Smart Dust”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 7, JULY 2003
[27]Ayaskant Shrivastava, “12-bit non-calibrating noise-immune redundant SAR ADC for System-on-a-chip “, ISCAS 2006
[28]Kyriacou E, Pavlopoulos S, Berler A, Neophytou M, Bourka A, Georgoulas A, Anagnostaki A, Karayiannis D, Schizas C, Pattichis C, Andreou A, Koutsouris D,: ‘Multi-purpose HealthCare Telemedicine Systems with mobile communication link support’ BioMedical Engineering OnLine 2003, 2:7.
[29]J. Goes, , N. Paulino, H. Pinto, R. Monteiro, Bruno Vaz, and A. S. Garção , “Low-Power Low-Voltage CMOS A/D Sigma-Delta Modulator for Bio-Potential Signals Driven by a Single-Phase Scheme” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 12, DECEMBER 2005
[30]Taiwan Semiconductor Manufacturing Co. (TSMC)
[31]Mikko Waltari “CIRCUIT TECHNIQUES FOR LOW-VOLTAGE AND HIGH-SPEED A/D CONVERTERS”, Helsinki University of Technology, Electronic Circuit Design Laboratory Report 33, Espoo 2002
[32]LM1086 datasheet, National Semiconductor, June 2005
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳麗娟、陳淑芬(2006)。國中生獨處能力與主觀生活壓力、身心健康之關係研究。教育心理學報,38 ( 2),85-104。
2. 黃韞臻、林淑惠(2009)。臺灣中部地區大學生獨處能力、生活壓力與身心健康之相關研究。新竹教育大學教育學報,26 ( 1) ,33-62。
3. 張光甫(1981)。一種提昇生命境界的方法--獨處之探討。教育學刊,3,97-112。
4. 蔣勳(2007)。孤獨六講。臺北市:聯合文學。
5. 胡秀媛、邱紹一、洪福源(2004)。國中學生孤獨偏好、學校適應及其相關因素之研究。仁德學報,3,9-24。
6. 林淑惠、黃韞臻(2009)。大學生的獨處能力與其生活壓力、相關變項之關係研究--以臺灣中部大學生為例。彰化師大教育學報,16,75-102。
7. 林佳蓉(2009)。萬千寵愛?隻身獨影?談獨生子女的友伴關係。師友月刊,499,42-46。
8. 吳麗卿(2003)。從孩子道德的發展來談教養的方法。師說,175,53-56。
9. 王富雄(1994)。國小遊戲化教學的探討。國教月刊,40(7.8),18-22。
10. 王慧勤(1995)。遊戲教學法妙用無窮。師友月刊,331,48。
11. 何飛鵬(2003)。數學力是隱藏的核心競爭力。商業周刊,381。取自http://www.businessweekly.com.tw/KArticle.aspx?id=16515。
12. 李寶琳(2014)。美國《不讓任何孩子落後》法案政策之績效責任探討與省思。臺北市立大學學報,45(1),1-20。
13. 林建平(2010)。低成就學童的家庭環境與自我調整學習之研究,新竹教育大學教育學報, 27(1),93-125。
14. 林碧珍(1990)。從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報,4,259-347。
15. 林福來、黃敏晃、呂玉琴(1996)。分數啟蒙的學習與教學之發展性研究。科學教育學刊,4(2),161-196。