|
In recent years, with the advances in mobile communication and growing popularity of the fourth-generation mobile network along with the enhancement in location positioning techniques, mobile devices have generated extensive spatial trajectory data, which represent the mobility of moving objects. New services are emerged to serve mobile users based on their predicted locations. This thesis is concerned with the long-term location prediction of a user. Most of the existing studies on location prediction can only predict one next location of a user, which is regarded as short-term next location prediction, and they are not applicable for long-term location predictions. We believe that if we can improve the accuracy of long-term next location prediction predict, every current service that takes benefits of predictability on next location can be further extended. In this thesis, we propose a prediction framework named LSTM-PPM that utilises deep learning and periodic pattern mining for effective long-term location prediction. Our framework devises the ideology from natural language model and uses multi-step recursive strategy to perform long-term prediction. To reduce the accumulated loss in multi-step strategy, we utilise further the periodic pattern mining technique. Through empirical evaluation on a real-life trajectory data, our framework is shown to provide effective performance in long-term location prediction.
|